资料简介
2.3 解二元一次方程组
教学目标
1.会用代入法解二元一次方程组.
2.初步体会解二元一次方程组的基本思想――“消元”.
3.通过研究解决问题的方法,培养学生合作交流意识与探究精神.
重点难点
重点
用代入法解二元一次方程组.
难点
探索如何用代入法将“二元”转化为“一元”的消元过程.
教学设计
复习提问:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得 2 分.负一场得 1 分,某队为了争取较好的名次,
想在全部 22 场比赛中得到 40 分,那么这个队胜负场数分别是多少?
解:设这个队胜 x 场,根据题意得
解得 x=18
则 22-x=4
答:这个队胜 18 场,负 4 场.
新课:
在上述问题中,我们可以设出两个未知数,列出二元一次方程组,
设胜的场数是 x,负的场数是 y,
x+y=22
2x+y=40
那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?可以发现,二
元一次方程组中第 1 个方程 x+y=22 说明 y=22-x,将第 2 个方程 2x+y=40 的 y 换为 22-x,这个方
程就化为一元一次方程 .
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一
元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、
逐一解决的想法,叫做消元思想.
归纳:
上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代
入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.
例 1 把下列方程写成用含 x 的式子表示 y 的形式:
(1)3x-y=5(2)3x+2y-1=0
40)22(2 =−+ xx
40)22(2 =−+ xx例 2 用代入法解方程组
x-y=3 ①
3x-8y=14②
例 3 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计
算)为 2:5.某厂每天生产这种消毒液 22.5 吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?
归纳:用代入消元法解二元一次方程组的步骤:
(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表
示出来.
(2)把(1)中所得的方程代入另一个方程,消去一个未知数.
(3)解所得到的一元一次方程,求得一个未知数的值.
(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组
的解.
布置作业
教学目标
知识与技能
1.掌握用“加减法”解二元一次方程组
2.体会解二元一次方程组中的“消元”思想.
过程与方法
经历利用加减消元法解二元一次方程组的过程,体会“化未知为已知”的化归思想.
情感、态度与价值观
在解方程的过程中,学会与他入合作,体会动手的乐趣和成功的喜悦.
重点难点
重点
正确运用“加减法”解二元一次方程组.
难点
灵活分析方程的系数特征.
教学设计
—、复习回顾
1.解二元一次方程的基本思想是什么?
2.用代入法解二元一次方程组的一般步骤是什么?
二、探究新知
1.出示方程组﹛
师:如何解此方程组?
②
,①
.232
1635
−=−
=+
yx
yx生:可用代入消元法求解.
师:投影小亮的想法,指出这种整体代入消元法对本题方便易求,完成后,引导学生思考:
(1)这个方程组的未知数的系数有什么特点?
(2)根据你的发现,能否通过别的方法达到消元的目的?
生:思考、讨论,然后按自己的想法去解,去交流.
师:交流完成后,出示小红的想法,并通过求解验证小红的想法是正确的.
2.出示做一做
让学生独立完成,并让学生先分析应消掉哪一个未知数,怎样消.
师生对这里的消元过程作出总结概括:
可以将两个方程直接相加或相减,消去一个未知数,得到一个一元一次方程,前提条件是:两个方程
组中同一未知数的系数相同或互为相反数.
3. 引导学生探索.
如果仍想用加减消元法来解方程组,应怎样做?根据是什么?然后让学生自己去做.对学生的各种解
法引导学生互评、自评,针对不同做法做出相应的评判.
师生共同总结消元过程并板书.
通过将方程组中两方程相加或相减,消去一个未知数,得到一元一次方程.通过求解一元一次方程,
再求得二元一次方程组的解.这种解方程组的方法叫加减消元法,简称加减法.
三、巩固练习
出示教材练习.指定学生板演,生生互评.
四、课堂小结
如何用“加减法”达到消元的目的?
五、布置作业
查看更多