返回

资料详情(天天资源网)

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

资料简介

8.4 因式分解 教学目标: (一)教学知识点 使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系. (二)能力训练要求 通过观察,发现因式分解与整式乘法的关系,培养学生的观察能力和语言概括能力. (三)情感与价值观要求 通过观察,推导因式分解与整式乘法的关系,让学生了解事物间的因果联系. 教学重、难点: 教学重点: 1.理解因式分解的意义. 2.识别因式分解与整式乘法的关系. 教学难点: 通过观察,归纳因式分解与整式乘法的关系. 教学过程: 一、创设情境,导入新课 [师]大家会计算(a+b)(a-b)吗? [生]会.(a+b)(a-b)=a2-b2. [ 师 ] 对 , 这 是 大 家 学 过 的 平 方 差 公 式 , 我 们 是 在 整 式 乘 法 中 学 习 的 . 从 式 子 (a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边 呢?即a2-b2=(a+b)(a-b)是否成立呢? [生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个 式子交换一下位置还成立. [师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内 容:因式分解的问题. 二、明确目标,互助探究: 1、想一想 由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运 算有什么不同?你还能举一些类似的例子加以说明吗? [生]由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是因式 分解,这两种过程正好相反. [生]由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b) 来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反. [师]非常棒.下面我们一起来总结一下.如:m(a+b+c)=ma+mb+mc (1) ma+mb+mc=m(a+b+c) (2) 联系:等式(1)和(2)是同一个多项式的两种不同表现形式. 区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算. 等式(2)是把一个多项式化成几个整式的积的形式,是因式分解. 即ma+mb+mc m(a+b+c). 所以,因式分解与整式乘法是相反方向的变形. 2、议一议 你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流. [师]大家可以观察a3-a与993-99这两个代数式. [生]a3-a=a(a2-1)=a(a-1)(a+1) 3、做一做 (1)计算下列各式: ①(m+4)(m-4)=__________; ②(y-3)2=__________; ③3x(x-1)=__________; ④m(a+b+c)=__________; ⑤a(a+1)(a-1)=__________. [生]解:①(m+4)(m-4)=m2-16; ②(y-3)2=y2-6y+9; ③3x(x-1)=3x2-3x; ④m(a+b+c)=ma+mb+mc; ⑤a(a+1)(a-1)=a(a2-1)=a3-a. (2)根据上面的算式填空: ①3x2-3x=( )( ); ②m2-16=( )( ); ③ma+mb+mc=( )( ); ④y2-6y+9=( )2. ⑤a3-a=( )( ). [生]把等号左右两边的式子调换一下即可.即: ①3x2-3x=3x(x-1); ②m2-16=(m+4)(m-4); ③ma+mb+mc=m(a+b+c); ④y2-6y+9=(y-3)2;⑤a3-a=a(a2-1)=a(a+1)(a-1). [师]能分析一下两个题中的形式变换吗? [生]在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等 号左边是多项式的形式,等号右边是整式乘积的形式. [师]在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式 是因式分解. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解 (factorization). 4、练习 下列各式从左到右的变形,哪些是因式分解? (1)4a(a+2b)=4a2+8ab; (2)6ax-3ax2=3ax(2-x); (3)a2-4=(a+2)(a-2); (4)x2-3x+2=x(x-3)+2. [生](1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,而不 是因式分解; (2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解; (3)和(2)相同,是因式分解; (4)是因式分解. [师]大家认可吗? [生]第(4)题不对,因为虽然x2-3x=x(x-3),但是等号右边x(x-3)+2整体来说它还是一 个多项式的形式,而不是乘积的形式,所以(4)的变形不是因式分解. 三、总结归纳,课堂反馈 本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整 式乘法与因式分解的关系是相反方向的变形. 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭
TOP