资料简介
课时同步练习(二十七) 对数的概念(建议用时:60分钟)[合格基础练]一、选择题1.已知f(ex)=x,则f(3)=( )A.log3e B.ln3C.e3D.3eB [∵f(ex)=x,∴由ex=3得x=ln3,即f(3)=ln3,选B.]2.方程2log3x=的解是( )A.9B.C.D.D [∵2log3x==2-2,∴log3x=-2,∴x=3-2=.]3.log3=( )A.4B.-4C.D.-B [令log3=t,则3t==3-4,∴t=-4.]4.log5(log3(log2x))=0,则x等于( )A.B.C.D.C [∵log5(log3(log2x))=0,∴log3(log2x)=1,∴log2x=3,∴x=23=8,4
∴x=8===.]5.下列各式:①lg(lg10)=0;②lg(lne)=0;③若10=lgx,则x=10;④若log25x=,则x=±5.其中正确的个数有( )A.1个B.2个C.3个D.4个B [对于①,∵lg(lg10)=lg1=0,∴①对;对于②,∵lg(lne)=lg1=0,∴②对;对于③,∵10=lgx,∴x=1010,③错;对于④,∵log25x=,∴x=25=5.所以只有①②正确.]二、填空题6.log33+3log32=________.3 [log33+3log32=1+2=3.]7.已知logx=3,则x=________. [∵logx=3,∴x=3,∴x==.]8.使log(x-1)(x+2)有意义的x的取值范围是________.(1,2)∪(2,+∞) [要使log(x-1)(x+2)有意义,则∴x>1且x≠2.]三、解答题9.求值:(1)9;(2)51+log52.4
[解] (1)9=(32)=3=4.(2)5=5×5=5×2=10.10.若logx=m,logy=m+2,求的值.[解] ∵logx=m,∴m=x,x2=2m.∵logy=m+2,∴m+2=y,y=2m+4,∴==2m-(2m+4)=-4=16.[等级过关练]1.3log34-27-lg0.01+lne3等于( )A.14B.0C.1D.6B [3log34-27-lg0.01+lne3=4--lg+3=4-32-(-2)+3=0.选B.]2.已知x2+y2-4x-2y+5=0,则logx(yx)的值是( )A.1B.0C.xD.yB [由x2+y2-4x-2y+5=0,则(x-2)2+(y-1)2=0,∴x=2,y=1,∴logx(yx)=log2(12)=0.]3.若a>0,a2=,则loga=________.1 [∵a2=且a>0,∴a=,∴log=1.]4
4.计算23+log23+32-log39=________.25 [23+log23+32-log39=23×2log23+=8×3+=25.]5.已知log2(log3(log4x))=0,且log4(log2y)=1,求·y的值.[解] ∵log2(log3(log4x))=0,∴log3(log4x)=1,∴log4x=3,∴x=43=64.由log4(log2y)=1,知log2y=4,∴y=24=16.因此·y=×16=8×8=64.4
查看更多