返回

资料详情(天天资源网)

天天资源网 / 初中数学 / 教学同步 / 华东师大版(2012) / 八年级上册 / 第13章 全等三角形 / 13.4 尺规作图 / 华东师大版数学八年级上册教案13.4 尺规作图

还剩 3 页未读,点击继续阅读

继续阅读

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载
有任何问题请联系天天官方客服QQ:403074932

资料简介

13.4 尺规作图1~3 作线段、角、角平分线(第1课时)【教学目标】一、基本目标使学生了解尺规作图的含义,学会用尺规作图作一条线段等于已知线段、一个角等于已知角、已知角的平分线.二、重难点目标【教学重点】用尺规作图作一条线段等于已知线线、一个角等于已知角、已知角的平分线.【教学难点】用尺规作图作已知角的平分线.【教学过程】环节1 自学提纲,生成问题【5min阅读】阅读教材P85~P87的内容,完成下面练习.【3min反馈】1.尺规作图是指( C )A.用量角器和刻度尺作图B.用圆规和有刻度的直尺作图C.用圆规和无刻度的直尺作图D.用量角器和无刻度的直尺作图2.下列作图语句正确的是( B )A.作射线AB,使AB=aB.作∠AOB=∠αC.延长直线AB到点C,使AC=BCD.以点O为圆心作弧环节2 合作探究,解决问题活动1 小组讨论(师生对学)1.作一条线段等于已知线段讨论1:已知MN为已知线段,你能用直尺和圆规准确地作一条与MN相等的线段吗?     作图步骤:(1)画一条射线AC;(2)以点A为端点,在射线上用圆规截取AC=MN.线段AC即为所求.2.作一个角等于已知角讨论2:这是我们在七年级已经学习过的作一个角等于已知角的方法,你能用所学的知识说明为什么∠A′O′B′=∠AOB吗?  【教师点拨】因为OC=OC′,OD=OD′,CD=C′D′,所以△ODC≌△O′D′C′(S.S.S.),所以∠A′O′B′=∠AOB.3.作已知角的平分线讨论3:如图,∠AOB为已知角,试按下列步骤用直尺和圆规准确地作出∠AOB的平分线.作图步骤:第一步:在射线OA、OB上,分别截取OD、OE,使OD=OE;第二步:分别以点D和点E为圆心、适当长(大于线段DE长的一半)为半径作圆弧,在∠AOB内,两弧交于点C;第三步:作射线OC.射线OC就是所求作的∠AOB的平分线.【教师点拨】OC就是所求作的∠AOB的平分线的证明过程见教材P87.讨论4:想想看,如何将∠AOB四等分?【教师点拨】在讨论3的基础上,再按上述作角平分线的方法分别作出∠COB、∠AOC的平分线OG、OH,即可将∠AOB四等分.活动2 巩固练习(学生独学)1.如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图: ①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为( C )A.30°B.50°C.60°D.70°2.如图,以∠AOB的顶点为圆心,取适当长为半径画弧,交OA于点C,交OB于点D,再分别以点C、D为圆心,大于CD长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连结CD.下列说法错误的是( B )A.射线OE是∠AOB的平分线B.O、E两点关于CD所在直线对称C.△COD是等腰三角形D.C、D两点关于OE所在直线对称3.完成教材P86“练习”第1~2题.略4.完成教材P88“练习”第1~2题.略环节3 课堂小结,当堂达标(学生总结,老师点评)【练习设计】请完成本课时对应练习! 4~5 作直线的垂线、线段的垂直平分线(第2课时)【教学目标】一、基本目标进一步了解尺规作图的含义,学会用尺规作图经过一已知点作已知直线的垂线、作已知线段的垂直平分线.二、重难点目标【教学重点】用尺规作图作直线的垂线、线段的垂直平分线.【教学难点】用尺规作图作线段的垂直平分线.【教学过程】环节1 自学提纲,生成问题【5min阅读】阅读教材P88~P90的内容,完成下面练习.【3min反馈】1.下列作图语言规范的是( D )A.过点P作线段AB的中垂线B.过点P作∠AOB的平分线C.在直线AB的延长线上取一点C,使AB=ACD.过点P作直线AB的垂线2.阅读下面材料:数学课上,老师提出如下问题:尺规作图:经过已知直线上一点作这条直线的垂线.已知:直线AB和AB上一点C.求作:AB的垂线,使它经过点C.小艾的作法如下:如图,(1)在直线AB上取一点D,使点D与点C不重合,以点C为圆心,CD长为半径作弧,交AB于D,E两点;(2)分别以点D和点E为圆心,大于DE长为半径作弧,两弧相交于点F;(3)作直线CF.直线CF就是所求作的垂线. 老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是等腰三角形的“三线合一”.环节2 合作探究,解决问题活动1 小组讨论(师生互学)1.经过一已知点作已知直线的垂线已知点与已知直线可以有两种不同的位置关系:点在直线上,点在直线外,因此要分别作这两种情况下已知直线的垂线.(1)经过已知直线上一点作已知直线的垂线.讨论1:已知直线AB和AB上一点C,试按下列步骤用直尺和圆规准确地经过点C作出直线AB的垂线.作图步骤:如图,由于点C在直线AB上,因此所作的垂线正好是平角ACB的平分线.第一步:作平角ACB的平分线;第二步:反向延长射线CD.直线CD就是要求作的垂线.(2)经过已知直线外一点作已知直线的垂线.讨论2:已知直线AB和AB外一点C,试按下列步骤用直尺和圆规准确地经过点C作出直线AB的垂线.作图步骤:如图,若以点C为圆心,作能与直线AB相交于D、E两点的弧,则△CDE为等腰三角形.由“等腰三角形顶角的平分线就是底边上的高”可知,只需作出∠DCE的平分线,则该平分线所在的直线就是要求作的垂线.讨论3:你能说说讨论2中为什么“只需作出∠DCE的平分线,则该平分线所在的直线就是要求作的垂线”吗?【教师点拨】等腰三角形“三线合一”的性质. 2.作已知线段的垂直平分线讨论4:如图,已知直线l是线段AB的垂直平分线,则直线l是线段AB的对称轴,对l上的任意两点C、D,通过对折可以发现,总有CA=CB,DA=DB.由此,你能发现作垂直平分线的方法吗?【教师点拨】见教材P90“试一试”.活动2 巩固练习(学生独学)1.如图,在Rt△ABC中,∠BAC=90°,依下列步骤尺规作图,并保留痕迹.步骤1:以B为圆心,BA长为半径画弧;步骤2:以C为圆心,CA为半径画弧,交前弧交于点D;步骤3:连结AD,交BC于点E.下列叙述不正确的是( B )A.BC垂直平分ADB.AD平分∠BACC.∠B=∠CAED.∠C=∠BAE2.下列尺规作图,能判断AD是△ABC边上的高是( B )3.如图,AE∥BF,AC平分∠BAE,交BF于点C.(1)尺规作图:过点B作AC的垂线,交AC于点O,交AE于点D:(保留作图痕迹,不写作法)(2)求证:AD=BC. (1)解:如图,OB即为所求.(2)证明:∵AE∥BF,∴∠EAC=∠BCA.∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC.∵BD⊥AO,AO平分∠BAD,∴AB=AD,∴AD=BC.活动3 拓展延伸(学生对学)【例题】如图,在△ABC中,AB=AC,D为AC上一点(不与A、C重合).(1)用直尺和圆规作DE⊥BC于点E,延长ED交BA的延长线于点F;(保留作图痕迹,不写画法)(2)判断△ADF的形状并加以证明.【互动探索】根据经过已知直线外一点作已知直线垂线的方法作图,再判断△ADF的形状.【解答】(1)如图所示,点E、F即为所求.(2)△ADF为等腰三角形.理由如下:∵AB=AC,∴∠ABC=∠ACB.∵FE⊥BC, ∴∠FEC=∠FEB=90°,∴∠BFE+∠B=90°,∠EDC+∠ACB=90°.∵∠ADF=∠EDC,∠ABC=∠ACB,∴∠AFD=∠ADF,∴AF=AD,∴△ADF为等腰三角形.【互动总结】(学生总结,老师点评)解本题的关键是熟练掌握基本作图,灵活运用所学知识解决问题.环节3 课堂小结,当堂达标(学生总结,老师点评)【练习设计】请完成本课时对应练习! 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭