返回

资料详情(天天资源网)

资料简介

第一章勾股定理1.3勾股定理的应用 情境引入1.学会运用勾股定理求立体图形中两点之间的最短距离.(重点)2.能够运用勾股定理解决实际生活中的问题.(重点,难点)学习目标 在A点的小狗,为了尽快吃到B点的香肠,它选择AB路线,而不选择ACB路线,难道小狗也懂数学?CBAAC+CB>AB(两点之间线段最短)情境引入思考:在立体图形中,怎么寻找最短线路呢?导入新课 BA问题:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?讲授新课立体图形中两点之间的最短距离知识点1 BAdABA'ABBAO想一想:蚂蚁走哪一条路线最近?A'蚂蚁A→B的路线 若已知圆柱体高为12cm,底面半径为3cm,π取3,则:BA3O12侧面展开图123πAB【方法归纳】立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.A'A' 例1有一个圆柱形油罐,要以A点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需多少米?(已知油罐的底面半径是2m,高AB是5m,π取3)ABABA'B'解:油罐的展开图如图,则AB'为梯子的最短距离.∵AA'=2×3×2=12,A'B'=5,∴AB'=13.即梯子最短需13米.典例精析 数学思想:立体图形平面图形转化展开 变式1:当小蚂蚁爬到距离上底3cm的点E时,小明同学拿饮料瓶的手一抖,那滴甜甜的饮料就顺着瓶子外壁滑到了距离下底3cm的点F处,小蚂蚁到达点F处的最短路程是多少?(π取3)EFEF EFEF解:如图,可知△ECF为直角三角形,由勾股定理,得EF2=EC2+CF2=82+(12-3-3)2=100,∴EF=10(cm). B牛奶盒A变式2:看到小蚂蚁终于喝到饮料的兴奋劲儿,小明又灵光乍现,拿出了牛奶盒,把小蚂蚁放在了点A处,并在点B处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程么?6cm8cm10cm BB18AB2610B3AB12=102+(6+8)2=296AB22=82+(10+6)2=320AB32=62+(10+8)2=360 问题:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺.(1)你能替他想办法完成任务吗?解:连接对角线AC,只要分别量出AB,BC,AC的长度即可.AB2+BC2=AC2△ABC为直角三角形勾股定理的实际应用知识点2 (2)量得AD长是30cm,AB长是40cm,BD长是50cm.AD边垂直于AB边吗?解:AD2+AB2=302+402=502=BD2,得∠DAB=90°,AD边垂直于AB边. (3)若随身只有一个长度为20cm的刻度尺,能有办法检验AD边是否垂直于AB边吗?解:在AD上取点M,使AM=9,在AB上取点N使AN=12,测量MN是否是15,是,就是垂直;不是,就是不垂直. 例2如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.故滑道AC的长度为5m.解:设滑道AC的长度为xm,则AB的长也为xm,AE的长度为(x-1)m.在Rt△ACE中,∠AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32=x2,解得x=5. 数学思想:实际问题数学问题转化建模 例3一个门框的尺寸如图所示,一块长3m,宽2.2m的长方形薄木板能否从门框内通过?为什么?2m1mABDC典例精析解:在Rt△ABC中,根据勾股定理,AC2=AB2+BC2=12+22=5因为AC大于木板的宽2.2m,所以木板能从门框内通过.分析:可以看出木板横着,竖着都不能通过,只能斜着.门框AC的长度是斜着能通过的最大长度,只要AC的长大于木板的宽就能通过. ABDCO解:在Rt△ABC中,根据勾股定理得OB2=AB2-OA2=2.62-2.42=1,∴OB=1.在Rt△COD中,根据勾股定理得OD2=CD2-OC2=2.62-(2.4-0.5)2=3.15,∴梯子的顶端沿墙下滑0.5m时,梯子底端并不是也外移0.5m,而是外移约0.77m.例4如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m.如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗? 例5在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?8米6米 8米6米ACB解:根据题意可以构建一直角三角形模型,如图.在Rt△ABC中,AC=6米,BC=8米,由勾股定理得∴这棵树在折断之前的高度是10+6=16(米). 利用勾股定理解决实际问题的一般步骤:(1)读懂题意,分析已知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.归纳总结数学问题直角三角形勾股定理实际问题转化构建利用解决 例6如图,在一次夏令营中,小明从营地A出发,沿北偏东53°方向走了400m到达点B,然后再沿北偏西37°方向走了300m到达目的地C.求A,C两点之间的距离.解:如图,过点B作BE∥AD.∴∠DAB=∠ABE=53°.∵37°+∠CBA+∠ABE=180°,∴∠CBA=90°,∴AC2=BC2+AB2=3002+4002=5002,∴AC=500m,即A,C两点间的距离为500m.E 方法总结此类问题解题的关键是将实际问题转化为数学问题;在数学模型(直角三角形)中,应用勾股定理或勾股定理的逆定理解题. 1.如图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cmB.5cmC.6cmD.10cmB随堂练习 2.有一个高为1.5m,半径是1m的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5m,问这根铁棒有多长?解:设伸入油桶中的长度为xm,则最长时:最短时,x=1.5所以最长是2.5+0.5=3(m).答:这根铁棒的长应在2~3m之间.所以最短是1.5+0.5=2(m).解得:x=2.5 梯子的顶端沿墙下滑4m,梯子底端外移8m.解:在Rt△AOB中,在Rt△COD中,3.一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗? 4.我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?DABC 解:设水池的水深AC为x尺,则这根芦苇长AD=AB=(x+1)尺,在直角三角形ABC中,BC=5尺.由勾股定理得,BC2+AC2=AB2即52+x2=(x+1)225+x2=x2+2x+1,2x=24,∴x=12,x+1=13.答:水池的水深12尺,这根芦苇长13尺. 5.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图①.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸? 解:如图②,在Rt△ABC中,因为AC=36cm,BC=108÷4=27(cm).由勾股定理,得AB2=AC2+BC2=362+272=2025=452,所以AB=45cm,所以整个油纸的长为45×4=180(cm). 勾股定理的应用立体图形中两点之间的最短距离勾股定理的实际应用课堂小结 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭