资料简介
2019年高中数学2.2.4平面与平面平行的性质课时作业新人教A版必修2【课时目标】 1.会用图形语言、文字语言、符号语言准确地描述平面与平面平行的性质定理.2.能运用平面与平面平行的性质定理,证明一些空间面面平行关系的简单命题.1.平面与平面平行的性质定理如果两个平行平面同时和第三个平面相交,________________________________.(1)符号表示为:________________⇒a∥b.(2)性质定理的作用:利用性质定理可证________________,也可用来作空间中的平行线.2.面面平行的其他性质(1)两平面平行,其中一个平面内的任一直线平行于____________________,即⇒________,可用来证明线面平行;(2)夹在两个平行平面间的平行线段________;(3)平行于同一平面的两个平面________.一、选择题1.下列说法正确的是( )A.如果两个平面有三个公共点,那么它们重合B.过两条异面直线中的一条可以作无数个平面与另一条直线平行C.在两个平行平面中,一个平面内的任何直线都与另一个平面平行D.如果两个平面平行,那么分别在两个平面中的两条直线平行2.设平面α∥平面β,直线a⊂α,点B∈β,则在β内过点B的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在惟一一条与a平行的直线3.如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA、PB、PC于A′、B′、C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于( )A.2∶25B.4∶25C.2∶5D.4∶54.α,β,γ为三个不重合的平面,a,b,c为三条不同的直线,则有下列命题,不正确的是( )①⇒a∥b;②⇒a∥b;③⇒α∥β;④⇒α∥β;⑤⇒α∥a;⑥⇒a∥α.A.④⑥B.②③⑥C.②③⑤⑥D.②③5.设α∥β,A∈α,B∈β,C是AB的中点,当A、B分别在平面α、β内运动时,那么所有的动点C( )
A.不共面B.当且仅当A、B分别在两条直线上移动时才共面C.当且仅当A、B分别在两条给定的异面直线上移动时才共面D.不论A、B如何移动,都共面6.已知平面α∥平面β,P是α,β外一点,过点P的直线M与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD的长为( )A.16B.24或C.14D.20二、填空题7.分别在两个平行平面的两个三角形,(1)若对应顶点的连线共点,那么这两个三角形具有______关系;(2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.8.过正方体ABCD-A1B1C1D1的三个顶点A1、C1、B的平面与底面ABCD所在平面的交线为l,则l与A1C1的位置关系是________.9.已知平面α∥β∥γ,两条直线l、M分别与平面α、β、γ相交于点A、B、C与D、E、F.已知AB=6,=,则AC=________.三、解答题10.如图所示,已知正方体ABCD-A1B1C1D1中,面对角线AB1、BC1上分别有两点E、F,且B1E=C1F.求证:EF∥平面ABCD.11.如图,在三棱柱ABC-A1B1C1中,M是A1C1的中点,平面AB1M∥平面BC1N,AC∩平面BC1N=N.求证:N为AC的中点.
能力提升12.如图所示,在底面是平行四边形的四棱锥P-ABCD中,点E在PD上,且PE∶ED=2∶1,在棱PC上是否存在一点F,使BF∥平面AEC?并证明你的结论.13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.
1.在空间平行的判断与证明时要注意线线、线面、面面平行关系的转化过程:2.强调两个问题(1)一条直线平行于一个平面,就平行于这个平面内的一切直线,这种说法是不对的,但可以认为这条直线与平面内的无数条直线平行.(2)两个平面平行,其中一个平面内的直线必定平行于另一个平面,但这两个平面内的直线不一定相互平行,也有可能异面.2.2.4 平面与平面平行的性质答案知识梳理1.那么它们的交线平行(1) (2)线线平行2.(1)另一个平面 a∥β (2)相等 (3)平行作业设计1.C [由两平面平行的定义知:一平面内的任何直线与另一平面均无交点,所以选C.]2.D [直线a与B可确定一个平面γ,∵B∈β∩γ,∴β与γ有一条公共直线b.由线面平行的性质定理知b∥a,所以存在性成立.因为过点B有且只有一条直线与已知直线a平行,所以b惟一.]3.B [面α∥面ABC,面PAB与它们的交线分别为A′B′,AB,∴AB∥A′B′,同理B′C′∥BC,易得△ABC∽△A′B′C′,S△A′B′C′∶S△ABC=()2=()2=.]4.C [由公理4及平行平面的传递性知①④正确.举反例知②③⑤⑥不正确.②中a,b可以相交,还可以异面;③中α,β可以相交;⑤中a可以在α内;⑥中a可以在α内.]5.D [如图所示,A′、B′分别是A、B两点在α、β上运动后的两点,此时AB中点变成A′B′中点C′,连接A′B,取A′B中点E.连接CE、C′E、AA′、BB′、CC′.则CE∥AA′,∴CE∥α.C′E∥BB′,∴C′E∥β.又∵α∥β,∴C′E∥α.∵C′E∩CE=E.∴平面CC′E∥平面α.∴CC′∥α.所以不论A、B如何移动,所有的动点C都在过C点且与α、β平行的平面上.]
6.B [当P点在平面α和平面β之间时,由三角形相似可求得BD=24,当平面α和平面β在点P同侧时可求得BD=.]7.(1)相似 (2)全等8.平行 [由面面平行的性质可知第三平面与两平行平面的交线是平行的.]9.15 [由题可知=⇒AC=·AB=×6=15.]10.证明 方法一 过E、F分别作AB、BC的垂线,EM、FN分别交AB、BC于M、N,连接MN.∵BB1⊥平面ABCD,∴BB1⊥AB,BB1⊥BC,∴EM∥BB1,FN∥BB1,∴EM∥FN,∵AB1=BC1,B1E=C1F,∴AE=BF,又∠B1AB=∠C1BC=45°,∴Rt△AME≌Rt△BNF,∴EM=FN.∴四边形MNFE是平行四边形,∴EF∥MN.又MN⊂平面ABCD,EF⊄平面ABCD,∴EF∥平面ABCD.方法二 过E作EG∥AB交BB1于G,连接GF,∴=,B1E=C1F,B1A=C1B,∴=,∴FG∥B1C1∥BC.又∵EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD.又EF⊂平面EFG,∴EF∥平面ABCD.11.证明 ∵平面AB1M∥平面BC1N,平面ACC1A1∩平面AB1M=AM,平面BC1N∩平面ACC1A1=C1N,∴C1N∥AM,又AC∥A1C1,∴四边形ANC1M为平行四边形,∴AN綊C1M=A1C1=AC,∴N为AC的中点.12.解
当F是棱PC的中点时,BF∥平面AEC,证明如下:取PE的中点M,连接FM,则FM∥CE,①由EM=PE=ED,知E是MD的中点,设BD∩AC=O,则O为BD的中点,连接OE,则BM∥OE,②由①②可知,平面BFM∥平面AEC,又BF⊂平面BFM,∴BF∥平面AEC.13.解 能.取AB,C1D1的中点M,N,连接A1M,MC,CN,NA1,∵A1N∥PC1且A1N=PC1,PC1∥MC,PC1=MC,∴四边形A1MCN是平行四边形,又∵A1N∥PC1,A1M∥BP,A1N∩A1M=A1,C1P∩PB=P,∴平面A1MCN∥平面PBC1,因此,过点A1与截面PBC1平行的截面是平行四边形.连接MN,作A1H⊥MN于点H,∵A1M=A1N=,MN=2,∴A1H=.∴S△A1MN=×2×=.故S▱A1MCN=2S△A1MN=2.
查看更多