返回

资料详情(天天资源网)

资料简介

直线与平面平行、平面与平面平行的判定1.直线与平面平行的判定2.平面与平面平行的判定3.面面平行线面平行线线平行4.借助模型理解与解题1.如图,长方体ABCD–A′B′C′D′中,(1)与AB平行的平面是.(2)与AA′平行的平面是.(3)与AD平行的平面是.2.如图,正方体,E为DD1的中点,试判断BD1与平面AEC的位置关系并说明理由.3.判断下列命题是否正确,正确的说明理由,错误的举例说明:(1)已知平面,和直线m,n,若则;(2)一个平面内两条不平行直线都平行于另一平面,则;4.如图,正方体ABCD–A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点.求证:平面AMN∥平面EFDB.5.平面与平面平行的条件可以是()A.内有无穷多条直线都与平行. B.直线a∥,a∥,E且直线a不在内,也不在内.C.直线,直线,且a∥,b∥D.内的任何直线都与平行.答案:1.(1)面A′B′C′D′,面CC′DD′;(2)面DD′C′C,面BB′C′C;(3)面A′D′B′C′,面BB′C′C.2.直线BD1∥面AEC.3.(1)命题不正确;(2)命题正确.4.提示:容易证明MN∥EF,NA∥EB,进而可证平面AMN∥平面EFDB.5.D经典习题例1在正方体ABCD–A1B1C1D1中,E、F分别为棱BC、C1D1的中点.求证:EF∥平面BB1D1D.【证明】连接AC交BD于O,连接OE,则OE∥DC,OE=.∵DC∥D1C1,DC=D1C1,F为D1C1的中点,∴OE∥D1F,OE=D1F,四边形D1FEO为平行四边形.∴EF∥D1O.又∵EF平面BB1D1D,D1O平面BB1D1D,∴EF∥平面BB1D1D.例2已知四棱锥P–ABCD中,底面ABCD为平行四边形.点M、N、Q分别在PA、BD、PD上,且PM:MA=BN:ND=PQ:QD.求证:平面MNQ∥平面PBC.【证明】∵PM∶MA=BN∶ND=PQ∶QD. ∴MQ∥AD,NQ∥BP,而BP平面PBC,NQ平面PBC,∴NQ∥平面PBC.又∵ABCD为平行四边形,BC∥AD,∴MQ∥BC,而BC平面PBC,MQ平面PBC,∴MQ∥平面PBC.由MQ∩NQ=Q,根据平面与平面平行的判定定理,∴平面MNQ∥平面PBC.【评析】由比例线段得到线线平行,依据线面平行的判定定理得到线面平行,证得两条相交直线平行于一个平面后,转化为面面平行.一般证“面面平面”问题最终转化为证线与线的平行. 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭