资料简介
简单几何体的表面积和体积
表面积、侧面积表面积:立体图形的各个面积之和叫做它的表面积。(每个面的面积相加)侧面积指立体图形的各个侧面的面积之和(除去底面)
棱柱、棱锥、棱台的侧面积侧面积所指的对象分别如下:棱柱----直棱柱。棱锥----正棱锥。棱台----正棱台
1.把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?宽=长方形
①直棱柱:设棱柱的高为h,底面多边形的周长为c,则S直棱柱侧=.(类比矩形的面积)②圆柱:如果圆柱的底面半径为r,母线长为l,那么S圆柱侧=.(类比矩形的面积)ch2πrl知识点一:柱、锥、台、球的表面积与侧面积(1)柱体的侧面积
棱柱的侧面展开图是什么?如何计算它的表面积?h正棱柱的侧面展开图2.棱柱、棱锥、棱台的展开图及表面积求法
圆柱的侧面展开图是矩形3.圆柱、圆锥、圆台的展开图及表面积求法圆柱O
棱锥的侧面展开图是什么?如何计算它的表面积?正三棱锥的侧面展开图棱锥的展开图
把正三棱锥侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?扇形
①正棱锥:设正棱锥底面正多边形的周长为c,斜高为h′,则S正棱锥侧=.(类比三角形的面积)②圆锥:如果圆锥的底面半径为r,母线长为l,那么S圆锥侧=.(类比三角形的面积)1∕2ch′πrl(2)锥体的侧面积
侧面展开正五棱锥的侧面展开图棱锥的展开图
圆锥的侧面展开图是扇形O圆锥
把正三棱台侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?(类比梯形的面积)
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?扇环
①正棱台:设正n棱台的上底面、下底面周长分别为c′、c,斜高为h′,则正n棱台的侧面积公式:S正棱台侧=.②圆台:如果圆台的上、下底面半径分别为r′、r,母线长为l,则S圆台侧=.1∕2(c+c′)h′Πl(r+r′)(3)台体的侧面积注:表面积=侧面积+底面积.
侧面展开h'h'正四棱台的侧面展开图棱台的侧面展开图是什么?如何计算它的表面积?棱台的展开图
参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么.OO’圆台的侧面展开图是扇环圆台
OO’侧圆台侧面积公式的推导
OO’圆柱、圆锥、圆台三者的表面积公式之间有什么关系?Or’=r上底扩大Or’=0上底缩小
棱柱、棱锥、棱台都是由多个平面图形围成的几何体,h'棱柱、棱锥、棱台的表面积它们的侧面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和
例1:一个正三棱台的上、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.分析:关键是求出斜高,注意图中的直角梯形ABCC1A1B1O1ODD1E
例2:圆台的上、下底面半径分别为2和4,高为,求其侧面展开图扇环所对的圆心角分析:抓住相似三角形中的相似比是解题的关键小结:1、抓住侧面展开图的形状,用好相应的计算公式,注意逆向用公式;2、圆台问题恢复成圆锥图形在圆锥中解决圆台问题,注意相似比.答:1800
例:圆台的上、下底半径分别是10cm和20cm,它的侧面展开图的扇环的圆心角是1800,那么圆台的侧面积是多少?(结果中保留π)
小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式C’=0C’=CS圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)lr1=0r1=r2
练习1:一个正三棱柱的底面是边长为5的正三角形,侧棱长为4,则其侧面积为______;答:60练习2:正四棱锥底面边长为6,高是4,中截面把棱锥截成一个小棱锥和一个棱台,求棱台的侧面积
例3已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积.DBCAS分析:四面体的展开图是由四个全等的正三角形组成.因为BC=a,所以:因此,四面体S-ABC的表面积.交BC于点D.解:先求的面积,过点S作,
思考:怎样求斜棱柱的侧面积?1)侧面展开图是——平行四边形2)S斜棱柱侧=直截面周长×侧棱长3)S侧=所有侧面面积之和
简单几何体的体积
几何体占有空间部分的大小叫做它的体积一、体积的概念与公理:
公理1、长方体的体积等于它的长、宽、高的积。V长方体=abc推论1、长方体的体积等于它的底面积s和高h的积。V长方体=sh推论2、正方体的体积等于它的棱长a的立方。V正方体=a3
公理2、夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等。PQ幂势既同,则积不容异祖暅原理
定理1:柱体(棱柱、圆柱)的体积等于它的底面积s和高h的积。V柱体=sh二:柱体的体积推论:底面半径为r,高为h圆柱的体积是V圆柱=r2h
三:锥体体积例2:如图:三棱柱AD1C1-BDC,底面积为S,高为h.ABDCD1C1CDABCD1ADCC1D1A答:可分成棱锥A-D1DC,棱锥A-D1C1C,棱锥A-BCD.问:(1)从A点出发棱柱能分割成几个三棱锥?
3.1.锥体(棱锥、圆锥)的体积(底面积S,高h)注意:三棱锥的顶点和底面可以根据需要变换,四面体的每一个面都可以作为底面,可以用来求点到面的距离问题:锥体(棱锥、圆锥)的体积
定理︰如果一个锥体(棱锥、圆锥)的底面积是S,高是h,那么它的体积是:推论:如果圆锥的底面半径是r,高是h,那么它的体积是:hSSV锥体=ShV圆锥=πr2hSh
ss/ss/hx四.台体的体积V台体=上下底面积分别是s/,s,高是h,则
推论:如果圆台的上,下底面半径是r1.r2,高是h,那么它的体积是:V圆台=πh
五.柱体、锥体、台体的体积公式之间有什么关系?S为底面面积,h为柱体高S分别为上、下底面面积,h为台体高S为底面面积,h为锥体高上底扩大上底缩小
(1)长方体的体积V长方体=abc=.(其中a、b、c为长、宽、高,S为底面积,h为高)(2)柱体(圆柱和棱柱)的体积V柱体=Sh.其中,V圆柱=πr2h(其中r为底面半径).Sh知识点二.柱、锥、台、球的体积
(3)锥体(圆锥和棱锥)的体积V锥体=Sh.其中V圆锥=,r为底面半径.1∕3πr2h
(4)台体的体积公式V台=h(S++S′).注:h为台体的高,S′和S分别为上下两个底面的面积.其中V圆台=.注:h为台体的高,r′、r分别为上、下两底的半径.(5)球的体积V球=.1∕3πh(r2+rr′+r′2)1∕3πR3
例 从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥A-BCD,求它的体积是正方体体积的几分之几?
1.求空间几何体的体积除利用公式法外,还常用分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算问题的常用方法.几何体的体积小结2.计算柱体、锥体、台体的体积关键是根据条件找出相应的底面面积和高,要充分利用多面体的截面及旋转体的轴截面,将空间问题转化为平面问题.
球的表面积与体积
RR球的体积:一个半径和高都等于R的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,所得的几何体的体积与一个半径为R的半球的体积相等。探究
RR
第一步:分割O球面被分割成n个网格,表面积分别为:则球的表面积:则球的体积为:设“小锥体”的体积为:O知识点三、球的表面积和体积(
O第二步:求近似和O由第一步得:
第三步:转化为球的表面积如果网格分的越细,则:①由①②得:②球的体积:的值就趋向于球的半径RO“小锥体”就越接近小棱锥。
设球的半径为R,则球的体积公式为V球=.4∕3πR3例1.(2009年高考上海卷)若球O1、O2表面积之比=4,则它们的半径之比=______.
(1)若球的表面积变为原来的2倍,则半径变为原来的—倍。(2)若球半径变为原来的2倍,则表面积变为原来的—倍。(3)若两球表面积之比为1:2,则其体积之比是———。(4)若两球体积之比是1:2,则其表面积之比是———。例2:
例3.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积。ABCDD1C1B1A1OABCDD1C1B1A1O分析:正方体内接于球,则由球和正方体都是中心对称图形可知,它们中心重合,则正方体对角线与球的直径相等。略解:变题1.如果球O和这个正方体的六个面都相切,则有S=——。变题2.如果球O和这个正方体的各条棱都相切,则有S=——。关键:找正方体的棱长a与球半径R之间的关系
OABC例4已知过球面上三点A、B、C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=2cm,求球的体积,表面积.解:如图,设球O半径为R,截面⊙O′的半径为r,
题型一几何体的展开与折叠有一根长为3πcm,底面半径为1cm的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为多少?把圆柱沿这条母线展开,将问题转化为平面上两点间的最短距离.题型分类深度剖析
解把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD(如图所示),由题意知BC=3πcm,AB=4πcm,点A与点C分别是铁丝的起、止位置,故线段AC的长度即为铁丝的最短长度.故铁丝的最短长度为5πcm.
题型三多面体的表面积及其体积一个正三棱锥的底面边长为6,侧棱长为,求这个三棱锥的体积.本题为求棱锥的体积问题.已知底面边长和侧棱长,可先求出三棱锥的底面面积和高,再根据体积公式求出其体积.解如图所示,正三棱锥S—ABC.设H为正△ABC的中心,连接SH,则SH的长即为该正三棱锥的高.
连接AH并延长交BC于E,则E为BC的中点,且AH⊥BC.∵△ABC是边长为6的正三角形,
题型四组合体的表面积及其体积(12分)在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合,求形成的三棱锥的外接球的体积.易知折叠成的几何体是棱长为1的正四面体,要求外接球的体积只要求出外接球的半径即可.解由已知条件知,平面图形中AE=EB=BC=CD=DA=DE=EC=1.∴折叠后得到一个正四面体.2分
方法一作AF⊥平面DEC,垂足为F,F即为△DEC的中心.取EC的中点G,连接DG、AG,过球心O作OH⊥平面AEC.则垂足H为△AEC的中心.4分∴外接球半径可利用△OHA∽△GFA求得.在△AFG和△AHO中,根据三角形相似可知,6分10分12分
方法二如图所示,把正四面体放在正方体中.显然,正四面体的外接球就是正方体的外接球.3分∵正四面体的棱长为1,∴正方体的棱长为,6分9分12分
查看更多