资料简介
第一章第一节课题圆柱、圆锥、圆台、球及简单组合体的结构特征【学习目标】1.感受空间实物及模型,增强学生的直观感知;2.能根据几何结构特征对空间物体进行分类;3.能概述圆柱、圆锥、圆台台体、球的结构特征;4.能描述一些简单组合体的结构.【重点难点】学习重点:感受大量空间实物及模型、概括出圆柱、锥、台的结构特征。学习难点:圆柱、锥、台的结构特征的概括。【学习过程】一、自主预习(预习教材P5~P7,找出疑惑之处)复习:①_________________________叫多面体,___________________________________叫旋转体.②棱柱的几何性质:_______是对应边平行的全等多边形,侧面都是________,侧棱____且____,平行于底面的截面是与_____全等的多边形;棱锥的几何性质:侧面都是______,平行于底面的截面与底面_____,其相似比等于____________.引入:上节我们讨论了多面体的结构特征,今天我们来探究旋转体的结构特征.二、合作探究 归纳展示任务1:圆柱的结构特征问题:观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?新知1;以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做圆柱(circularcylinder),旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线,如图所示:圆柱用表示它的轴的字母表示,图中的圆柱可表示为.圆柱和棱柱统称为柱体.任务2:圆锥的结构特征问题:下图的实物是一个圆锥,与圆柱一样也是平面图形旋转而成的.仿照圆柱的有关定义,你能定义什么是圆锥以及圆锥的轴、底面、侧面、母线吗?试在旁边的图中标出来.
新知2:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表示它的轴的字母表示.棱锥与圆锥统称为锥体.任务3:圆台的结构特征问题:下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?新知3;直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustumofacone).用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分也是圆台.圆台和圆柱、圆锥一样,也有轴、底面、侧面、母线,请你在上图中标出它们,并把圆台用字母表示出来.棱台与圆台统称为台体.反思:结合结构特征,从变化的角度思考,圆台、圆柱、圆锥三者之间有什么关系?任务4:球的结构特征问题:球也是旋转体,怎么得到的?新知4:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solidsphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母表示,如球.
任务5:简单组合体的结构特征问题:矿泉水塑料瓶由哪些几何体构成?灯管呢?新知5:由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.例将下列几何体按结构特征分类填空:⑴集装箱⑵运油车的油罐⑶排球⑷羽毛球⑸魔方⑹金字塔⑺三棱镜⑻滤纸卷成的漏斗⑼量筒⑽量杯⑾地球⑿一桶方便面⒀一个四棱锥形的建筑物被飓风挂走了一个顶,剩下的上底面与地面平行;①棱柱结构特征的有________________________;②棱锥结构特征的有________________________;③圆柱结构特征的有________________________;④圆锥结构特征的有________________________;⑤棱台结构特征的有________________________;⑥圆台结构特征的有________________________;⑦球的结构特征的有________________________;⑧简单组合体______________________________.练.如图,长方体被截去一部分,其中EH‖,剩下的几何体是什么?截去的几何体是什么?三、讨论交流点拨提升师生点拨要点记载:四、学能展示课堂闯关1.三边长分别为3、4、5,绕着其中一边旋转得到圆锥,对所有可能描述不对的是().A.是底面半径3的圆锥B.是底面半径为4的圆锥C.是底面半径5的圆锥D.是母线长为5的圆锥2.下列命题中正确的是().A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线3.一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为().A.B.C.D.4.已知,ABCD为等腰梯形,两底边为AB,CD.且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体.5.圆锥母线长为,侧面展开图圆心角的正弦值为,则高等于__________.五、学后反思1.圆柱、圆锥、圆台、球的几何特征及有关概念;2.简单组合体的结构特征.
知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形.【课后作业】:1、图(1)是由哪个平面图形旋转得到的()ABCD2、下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心3、下列说法正确的个数为()①经过圆柱任意两条母线的截面是一个矩形②连接圆柱上、下底面圆周上的两点的线段是圆柱的母线③圆柱的任意两条母线互相平行A.0B.1C.2D.34、下列几何体的轴截面一定是圆面的是()A.圆柱B.圆锥C.球D.圆台5、如果两个球的体积之比为8:27,那么两个球的表面积之比为()A.8:27B.2:3C.4:9D.2:96、A、B为球面上不同两点,则通过A、B所有大圆的个数()A.1个B.无数个C.一个也没有D.1个或无数个7、球的半径扩大为原来的2倍,它的体积扩大为原来的_________倍.8如图,是由等腰梯形、矩形、半圆、倒形三角对接形成的轴对称平面图形,若将9它绕轴旋转后形成一个组合体,下面说法不正确的是___________A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点10用一个平面截半径为的球,截面面积是,则球心到截面的距离为多少?
查看更多