资料简介
3.2.2函数模型及其应用(二)
解决应用题的一般程序是:①审题:弄清题意,分清条件和结论,理顺数量关系;②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;③解模:求解数学模型,得出数学结论;④还原:将用数学知识和方法得出的结论,还原为实际问题的意义.
总结解应用题的策略:抽象概括实际问题数学模型推理演算实际问题还原说明数学模型的解的解
例1某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表所示:销售单价/元6789101112日均销售量/桶480440400360320280240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?
1.一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现,每间客房每天的价格与住房率之间有如下关系:每间每天房价20元18元16元14元住房率65%75%85%95%要使每天收入达到最高,每间定价应为(C)A.20元B.18元C.16元D.14元2.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每个涨价1元,其销售量就减少20个,为了取得最大利润,每个售价应定为()AA.95元B.100元C.105元D.110元y=(90+x-80)(400-20x)
课后练习1.某城市出租汽车统一价格,凡上车起步价为6元,行程不超过2km者均按此价收费,行程超过2km,按1.8元/km收费,另外,遇到塞车或等候时,汽车虽没有行驶,仍按6分钟折算1km计算,陈先生坐了一趟这种出租车,车费17元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程介于(A)A.5~7kmB.9~11kmC.7~9kmD.3~5km
2.某纯净水制造厂在净化水的过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以下,则至少需要过滤的次数为(C)(参考数据lg2=0.3010,lg3=0.4771)A.5B.10C.14D.15
3.有一批材料可以建成200m的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如下图所示),则围成的矩形最大面积为________m25002(围墙厚度不计).4x3y2002004x3y24x3yy3xy2500
查看更多