资料简介
竞赛辅导内部讲义§4指、对数函数,幂函数 指数、对数以及指数函数与对数函数,是高中代数非常重要的内容。无论在高考及数学竞赛中,都具有重要地位。熟练掌握指数对数概念及其运算性质,熟练掌握指数函数与对数函数这一对反函数的性质、图象及其相互关系,对学习好高中函数知识,意义重大。一、基础知识1.指数函数及其性质:形如y=ax(a>0,a1)的函数叫做指数函数,其定义域为R,值域为(0,+∞),当00,a1)的函数叫做对数函数,其定义域为(0,+∞),值域为R,图象过定点(1,0)。当00,N>0);1)ax=Mx=logaM(a>0,a1);2)loga(MN)=logaM+logaN;3)loga()=logaM-logaN;4)logaMn=nlogaM;,5)loga=logaM;6)alogaM=M;7)logab=(a,b,c>0,a,c1).5.函数y=x+(a>0)的单调递增区间是和,单调递减区间为和。(请读者自己用定义证明)6.连续函数的性质:若a0且f(1)>0(因为-10,所以f(a)>0,即ab+bc+ca+1>0.例2、(柯西不等式)若a1,a2,…,an是不全为0的实数,b1,b2,…,bn∈R,则()·()≥()2,等号当且仅当存在R,使ai=,i=1,2,…,n时成立。【证明】令f(x)=()x2-2()x+=,15
竞赛辅导内部讲义因为>0,且对任意x∈R,f(x)≥0,所以△=4()-4()()≤0.展开得()()≥()2。等号成立等价于f(x)=0有实根,即存在,使ai=,i=1,2,…,n。例3设x,y∈R+,x+y=c,c为常数且c∈(0,2],求u=的最小值。【解】u==xy+≥xy++2·=xy++2.令xy=t,则00,所以y=2,x=4.所以方程组的解为.例9已知a>0,a1,试求使方程loga(x-ak)=loga2(x2-a2)有解的k的取值范围。15
竞赛辅导内部讲义【解】由对数性质知,原方程的解x应满足.①②③若①、②同时成立,则③必成立,故只需解.由①可得2kx=a(1+k2),④当k=0时,④无解;当k0时,④的解是x=,代入②得>k.若k1,所以k0,则k2
查看更多