资料简介
1.1.3《集合的基本运算》(2)导学案【学习目标】1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;2.能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.【重点难点】重点:补集的有关运算及数轴的应用。难点:对补集概念的理解。【知识链接】(预习教材P10~P11,找出疑惑之处)复习1:集合相关概念及运算.①如果集合A的任意一个元素都是集合B的元素,则称集合A是集合B的,记作.若集合,存在元素,则称集合A是集合B的,记作.若,则.②两个集合的部分、部分,分别是它们交集、并集,用符号语言表示为:;.复习2:已知A={x|x+3>0},B={x|x≤-3},则A、B、R有何关系?【学习过程】※学习探究探究:设U={全班同学}、A={全班参加足球队的同学}、B={全班没有参加足球队的同学},则U、A、B有何关系?新知:全集、补集.①全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U.②补集:已知集合U,集合AU,由U中所有不属于A的元素组成的集合,叫作A相对于U的补集(complementaryset),记作:,读作:“A在U中补集”,即.补集的Venn图表示如右:
说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制.试试:(1)U={2,3,4},A={4,3},B=,则=,=;(2)设U={x|x
查看更多