返回

资料详情(天天资源网)

资料简介

经典小初高讲义§1.1.3集合的基本运算一.教学目标:1.知识与技能(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.2.过程与方法学生通过观察和类比,借助Venn图理解集合的基本运算.3.情感.态度与价值观(1)进一步树立数形结合的思想.(2)进一步体会类比的作用.(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.二.教学重点.难点重点:交集与并集,全集与补集的概念.难点:理解交集与并集的概念.符号之间的区别与联系.三.学法与教学用具1.学法:学生借助Venn图,通过观察.类比.思考.交流和讨论等,理解集合的基本运算.2.教学用具:投影仪.四.教学思路(一)创设情景,揭示课题问题1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也可以“相加”呢?请同学们考察下列各个集合,你能说出集合C与集合A.B之间的关系吗?(1)(2)引导学生通过观察,类比.思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的内容。(二)研探新知l.并集—般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.记作:A∪B.读作:A并B.其含义用符号表示为:用Venn图表示如下:小初高优秀教案 经典小初高讲义AAB请同学们用并集运算符号表示问题1中A,B,C三者之间的关系.练习.检查和反馈(1)设A={4,5,6,8),B={3,5,7,8),求A∪B.(2)设集合让学生独立完成后,教师通过检查,进行反馈,并强调:(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次.(2)对于表示不等式解集的集合的运算,可借助数轴解题.2.交集(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A.B与集合C之间有什么关系?②②B={|是新华中学2004年9月入学的高一年级同学},C={|是新华中学2004年9月入学的高一年级女同学}.教师组织学生思考.讨论和交流,得出结论,从而得出交集的定义;一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:A∩B.读作:A交B其含义用符号表示为:接着教师要求学生用Venn图表示交集运算.AB(2)练习.检查和反馈①设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示的位置关系.②学校里开运动会,设A={|是参加一百米跑的同学},B={|小初高优秀教案 经典小初高讲义是参加二百米跑的同学},C={|是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A∩B与A∩C的含义.学生独立练习,教师检查,作个别指导.并对学生中存在的问题进行反馈和纠正.(三)学生自主学习,阅读理解1.教师引导学生阅读教材第10~11页中有关补集的内容,并思考回答下例问题:(1)什么叫全集?(2)补集的含义是什么?用符号如何表示它的含义?用Venn图又表示?(3)已知集合.(4)设S={|是至少有一组对边平行的四边形},A={|是平行四边形},B={|是菱形},C={|是矩形},求.在学生阅读.思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价.(四)归纳整理,整体认识1.通过对集合的学习,同学对集合这种语言有什么感受?2.并集.交集和补集这三种集合运算有什么区别?(五)作业1.课外思考:对于集合的基本运算,你能得出哪些运算规律?2.请你举出现实生活中的一个实例,并说明其并集.交集和补集的现实含义.3.书面作业:教材第12页习题1.1A组第7题和B组第4题.A组一、选择题1.集合,,若,则t的值是()A.1B.2,0或-1C.2或D.不存在2.设集合,,则()A.B.C.D.3.已知全集,,,那么集合是()A.B.C.D.小初高优秀教案 经典小初高讲义4.非空集合P,Q,R满足关系,,则P,R的关系是()A.P=RB.C.D.5.已知I为全集,集合M,NI,则,则()A.B.C.D.6.设全集,集合,,那么等于()A.B.C.D.二、填空题7.设集合,,若,则实数a的取值范围是_______________.8.已知集合,,则______.9.已知全集,子集,,则实数a=_________.10.已知,,若,则a的取值范围为_______________.11.设,,,则a+b=_________.12.已知集合,,若,则实数m的取值范围为__________.三、解答题13.已知集合,,且,求.14.全集U=Z.集合,,若,求a的取值范围.高考练习:1.设U={x︱x是小于9的正整数}A={1,2,3,4},B={3,4,5,6},则CUA∩CUB=()。(2007年湖北高考题)A.{1,2}B.{3,4}C.{5,6}D.{7,8}小初高优秀教案 经典小初高讲义2.已知全集U=Z,A={-1,0,1,2},B={x︱x2=x},则A∩CUB=()。(2007年江苏高考题)A.{-1,2}B.{-3,0}C.{0,1}D.{1,2}小初高优秀教案 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭