资料简介
课题:展开与折叠科目:数学教学对象:小学五年级学生课时:1课时本节课是五年级下册第二单元继“长方体的认识”之后的一个学习内容,在本章教材的编排顺序中起着承上启下的作用。主要包括“做一做”、“练一练”两个栏目。“做一做”的目的是让学生通过探索活动,了解长方体和正方体的展开图,培养学生的空间观念和语言表达能力。“练一练”的目的是通过想象、动手操作进行尝试,强化长方体、正方体与其展开图之间相互转化的认识与理解,培养学生的空间想象能力。本节课使学生进一步认识立体图形与平面图形的关系,更重要的是让学生通过观察、思考和动手操作,经历和体验图形的变化过程,进一步发展学生的空间观念,培养对应和分类的数学思想,为后面的学习打下基础。二、教学目标、1、知识技能:通过动手操作的探索活动,了解“什么是展开,什么是折叠”,掌握长方体和正方体展开图的特点。2、过程与方法:通过探索活动感受立体图形和平面图形之间的相互转化,建立长方体或正方体立体图中的面与展开图中的面的对应关系,培养空间想象力,发展空间观念。3、情感态度与价值观:在操作的过程中学会与人合作,学会交流自己的思维与方法。三、学习者特征分析(五年级的学生已经具备了初步的动手操作能力,而且有着强烈的探索求知欲望,在解决问题方面热情极高,但是缺少有序思考和有效解决问题的策略。为此教师在教学的设计中,应加强策略指导,让学生在有限的时间里,获取最有效的感悟。在知识的储备方面,学生已经初步认识了长方体、正方体等立体图形的特征,因为对于本节课的理解和探索已经具备了最基本的知识储备,因此进一步发展空间观念、让学生体会体与面的联系,将作为本节课的一个教学重点。四、教学策略选择与设计(在小组间合作的基础上,以做游戏的方式达成目标)五、教学重点及难点教学重点:经历展开与折叠的活动过程,发展空间观念。教学难点:判断一个展开图能否折叠成正方体。六、教学过程【教学过程】 一、创设情境,引入课题 1.(出示漂亮的大礼品盒,引发学生研究兴趣)想做漂亮的礼品盒么?打算怎样研究? 2.提出研究的方法并揭示课题:展开与折叠 (设计意图:创设生活情境,激起学生学习的兴趣;研究的欲望,学生和老师共同提出研究方法,引发学生探究的欲望,为学生的后续学习作好认知和心理的准备。)
二、自主探究活动之一 1.引发猜想,唤起思考:长方体、正方体展开后会得到什么形状的图形? 2.学生动手操作,初步探究; (1)初步感知长方体、正方体的展开图。 教师提出“展开”的要求: ①沿棱剪开,不能剪散 ②边剪边想,相对的面跑到哪里去了? ③把相对的面用相同的符号标出来。 教师巡堂,并与学生一起“展开”长方体和正方体。 (2)初步感知“展开”与“折叠”的关系。 四人小组交流,教师相机(展开活动)提问:“为什么把展开的图形又折叠回去呢?” (3)请学生把长方体、正方体各种不同的形状的展开图展示在黑板上。 3.揭示概念,探究特征: (1)揭示展开图的概念: 象这样由立体图形展开后得到的平面图形就叫做长方体(正方体)的展开图。 (2)探究长方体、正方体展开的特征: 观察黑板上的长方体和正方体的展开图,有什么特点? 引导学生感悟: ①长方体、正方体展开图各小图形的特点 ②长方体、正方体展开图的不唯一的特点 ③长方体、正方体展开图中相对面的位置特点等 (设计意图:通过让学生动手操作,经历和体验图形的变化过程,使学生知道正方体、长方体的展开图;通过观察、思考感知展开图的不唯一性,加深对正方体、长方体的认识;在找相对面的操作活动中,使学生充分经历展开与折叠的过程,进而发展学生的空间观念。) 三、自主探究活动之二
1.(出示做一做1)下面哪些图形沿虚线对折后能围成正方体? (1)学生独立思考,进行判断。 能围成正方体的在课本上打√,不能围成正方体的打×。 (2)反馈、辨析。 ①把你认为不能围成正方体的找出来。说说自己的想法!(鼓励学生想象折叠的过程) 多媒体课件演示。 (设计意图:把不能围成正方体的图形先提取出来组织讨论,一是容易辨析,二是便于学生表达,三是较易发展学生的空间感。把学生已确认不能围成正方体的图形又用多媒体课件演示,体会不能围成正方体的同时,发展了学生的空间观念。) ②找出能围成正方体的图形。 教师提出要求:能确定哪个图形能围成正方体的请想象一下它是怎样围成的;如果无法确认能否围成正方体的请拿出老师为大家提供的学具折一折,再想象一下。 相机点拨1:你是怎样围成正方体的?引出其中一个小图形不动,就是把它作为正方体的底面,其它的小图形围起来就得到一个正方体。同时体会折叠方法的不唯一。 相机点拨2:观察正方体的展开图寻找正方体的相对面。 [设计意图:部分学生的正确判断不能代替全班学生知识的掌握,给不同的学生设计不同的要求,在满足不同思维水平学生的需求的同时,更有利于不同层次学生发展空间观念的这一教学目标的达成。] 2.出示做一做2:下面哪些图形沿虚线折叠后能围成长方体? (1)学生独立思考判断。 (2)小组交流。 (3)反馈、辨析。 ①哪些图形沿虚线折叠后能围成长方体?在脑子里想象你是怎样围的。 (学生无疑义的,借助多媒体课件演示。) ②引发争论:4号图形能围成长方体吗? 全班动手折叠验证,说明理由。 多媒体课件演示。
(设计意图:本环节重点放在4号图形的争论上,利用学生的差异资源,充分暴露学生的思维状态,使学生亲身经历猜想、辨析、验证等活动,感受平面图形与立体图形的关系,发展学生数学思考、解决问题的能力与空间观念。) ③哪些图形不能围成长方体?说明理由。 提升思维,深层探究 由上例引发的思考:(出示3号图形) 怎样变一变使3号图形能围成长方体? 相机点拨:摆放的规律 2.出示下图: 怎样移动两个小正方形可得到正方体的展开图? (设计意图:由上例不能围成长方体的图形引发的探究活动,变不能围为能围、变静为动、变特殊为一般,有效激活学生的思维。更进一步发展学生的空间观念。) 四、课后延伸,拓展探究 简单的展开与折叠让我们进一步认识了长方体和正方体,其实这样的方法还可以研究其它的立体图形。相信同学们随着课后的不断研究一定会有了不起的发现。 (设计意图:渗透一种转化的思想,及研究方法的指导,体现学科的价值。)七、教学评价设计(由于学生的思维能力、操作能力和空间观念存在差异,接受能力和思维方式也不同,所以,学生在学习过程,允许学生的个性化发展。对学习有困难的学生,应及时加以方法的指导,使他们在想象的基础上通过操作验证掌握新知,对于思维水平较高、空间观念较强的学生,如果在没有操作的基础上,只通过想象直接判断,应给予肯定和鼓励。例如“先想后剪”这个环节,目的在于提高学生空间想象能力,发展空间观念,而不要求学生一定达到剪出来的展开图和想象中的一样;又如“根据平面图形判断能否围成立体图形,并说明理由。”这个练习对学生的空间观念要求比较高,学生学起来有一定的难度,因此呈现出来的思维结果会出现不同层次:有些学生是在想象和操作的基础上,才能说出不能围成立体图形的理由,能围成的在展开图中标出对应的是立体图形中的哪个面;有些学生只在必要时借助学具;还有些学生不借助学具的操作直接就能判断出来。因此允许不同层次的学生有不同层次的发展和进步。八、板书设计:正方体是由完全相等的6个面来组成的
查看更多