返回

资料详情(天天资源网)

资料简介

19.2 平行四边形的性质 3 教学目标 知识与技能 掌握平行四边形的性质 3:平行四边形的对角线互相平分。 过程与方法 通过观察、猜想、论证等活动探索平行四边形的性质,进一步发展学生的逻 辑推理能力及有条理的表达能力。 情感、态度与价值观 通过对平行四边形知识的探索,感受几何图形中的数学关系,同时让学生在 独立思考的基础上参与讨论,享受解决问题的成功体验,增强学好数学的信心。 重点难点 重点 掌握平行四边形的性质 3,并运用性质解决实际问题。 难点 平行四边形性质 3 的探索. 教学准备 多媒体课件 、 刻度尺 教学方法 通过观察、交流、论证,让学生自主学习,进行探索、归纳,获取知识。 教学过程 一、创设情境,导入新课 又到了卫生大扫除日,这次我们班的班主任安排了四位同学整理一块平行 四边形的卫生区,为了公平,他是这样分的: 你会选哪一块呢? (通过创设具体情境,让学生自己亲身体验,激发学生求知欲望,引入新课,板 书课题) 二、实践探索,获取新知 如图, ABCD 的两条对角线 AC,BD 相交于点 O. 想一想:OA 与 OC,OB 与 OD 的长度关系?(学生独立思考后回答,并猜想平行 四边形对角线的关系。) 1 号 2 号 3 号 4 号 猜想:平行四边形的对角线互相平分 你能证明吗? 证明猜想 如图 , ABCD 的两条对角线 AC,BD 相交于点 O. 求证:OA=OC,OB=OD (学生独立完成解答过程,并找一生板演,师生共同分析解答过程) 证明:在 ABCD 中, ∵AB∥CD, ∴∠1=∠2,∠3=∠4, 又∵AB=CD, ∴△OAB≌△OCD(ASA), ∴OB=OD,OA=OC. 归纳小结 平行四边形的性质 3 平行四边形的对角线互相平分 几何语言 : ∵四边形 ABCD 是平行四边形 ∴OA=OC,OB=OD 三、教授例题,巩固新知 例 已知:如图, 在 ABCD 中,对角线 AC,BD 相交于点 O,AB⊥AC, AB=3,AD=5,求 BD 的长 A B O C D 解 ∵四边形 ABCD 是平行四边形, 1 2 3 4 o ∴BC=AD=5. ∵AB⊥AC ∴△ABC 是直角三角形 ∴AC= ABBC 22  = 35 22  =4 OA = 2 1 AC = 2 ∴OB= OAAB 22  = 23 22  = 13 ∴BD=2OB= 132 (让学生思考后,独立完成本题的解答过程,并找一生板演,可训练学生表达推 理的逻辑与严谨性。) 四、课堂练习 1. 如图,在 ABCD 中,对角线 AC,BD 相交于点 O,若 AC=10,BD=6,AB =8,则△OAB 的周长为( D ) A.12 B.13 C.15 D.16 2、班主任分地合理吗? 五、课堂小结 说说本节课你有哪些收获?和同学分享一下! M 六、作业布置 课本 79 页练习 第 1 题,第 2 题 七、板书设计 平行四边形的性质 3 平行四边形的对角线互相平分 几何语言: ∵四边形 ABCD 是平行四边形 ∴OA=OC,OB=OD 八、课后反思 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭