资料简介
《相似三角形的应用》教学反思相似三角形的应用分两块内容,一块是相似三角形的周长比和面积比与相似比的关系,另一块是相似性质在实际生活中的应用。第一个应用总的来说是比较简单的,没有太难,太偏的问题,但实际应用的难度就大大提高了,涉及到的实际问题,不仅题意难以理解,还有就是问题复杂,学生摸不找头脑,找不到解体思路,像我新课后完成后布置学生完成的课后作业题2、5、6题,有些成绩较好的学生跑到我办公室说:“老师,你布置的书本作业我一个都做不来。” 第一块内容虽然相对而言比较简单,但学生也有比较容易错的地方,比如说题目条件是两个相似三角形的面积比是多少,学生往往会直接将其开方得到两个相似三角形相似比是多少,这样做的原因就是学生还没真正理解“相似的性质”——先要有相似,才有比例。另外,在相似性质的应用中有的时候还会用到相似比等于对应线段的比(比如说对应边上的高的比),用到这个性质的题目比较多,特别是在这样一个图形中:直角三角形里面放一个长方形或正方形。学生刚开始的时候不容易找到。相似性质的应用也常常与“比例尺”问题结合起来,学生在单位的换算上经常出错,关键是科学计数法还不熟练。相似性质应用最多的地方就是求面积问题,还有类问题就是三角形与三角形之间虽然不相似,但它们等高,所以它们的面积比等于它们底边的比,也就等于它们底边所在的一组三角形的相似比。 在第二块内容的设计中,我主要以书本上的例题为主导,由于时间关系通过例题介绍了两种构造相似三角形求出树高的方法。特别是第一种方法中,要用到科学中入射角等于反射角的原理,在以后学生的练习中,发现个别学生不知道这个原理,还发现部分学生将这个图形与“平行预备定理”的图形相混淆了,由平行预备定理直接得出这个图形中的两个三角形相似。而在第二种方法中,要让学生了解:“同一时刻太阳光线是平行的”这个原理,有些不是很细致的学生在听课时就忽略了这一点,所以在自己解题时不知道该怎样证明这两个三角形相似了。还有较多的学生就是在解答这类实际问题时,经常忘了要先证明三角形相似再应用对应边成比例,马上就比例式出来计算了。
查看更多