资料简介
梯形面积的计算
第一课时
教学内容:梯形面积的计算(例题、做一做,练习十八1~4题)
教学要求:
1.使学生理解并掌握梯形面积的计算公式,能正确地应用公式进行计算。
2.通过操作,培养学生的迁移类推能力和抽象概括能力。
3.培养学生应用所学知识解决实际问题的能力,发展空间观念, 引导学生运用转化的思想探索规律。
教学重点:理解并掌握梯形的面积计算公式。
教学难点:理解梯形面积计算公式的推导过程。
教具准备:
1.两个完全一样的梯形纸板和剪刀。
2.20根同样的铅笔和渠道模型。
教学过程:
一、激发
1.计算下面图形的面积。(单位:厘米)
1.8 2.1
2.5
3.2
2.三角形面积的计算公式是怎样推导出来的?为什么要“除以2”? 3厘米
3.指出下面梯形的上底、下底和高。
4.导入:我们已经掌握了平行四边形、 4厘米
三角形的面积计算公式,有了这两
方面的基础,我相信大家一定也能 5厘米
把梯形转化成已经学过的图形,计算出梯形面积。大家有信心吗?
二、尝试
1.你能仿照求三角形面积的方法,用两个完全一样的梯形推导出梯形面积的计算公式吗?拼拼看。
2.学生操作,互相讨论。
3.根据讨论结果,完成80页书空,并计算出复习(3)的面积。
4.汇报结果。提问:通过刚才的学习,你知道了什么?
引导学生明确:
①操作过程。先按住梯形右下角的顶点,再使一个梯形向逆时针方向旋转180度,使梯形的上下底成一条直线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成一个平行四边形为止。
②两个完全一样的梯形能拼成一个平行四边形。
③这个平行四边形的底等于梯形的上、下底之和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半。
因为:平行四边形的面积:底×高
所以:梯形面积:(上底+下底)×高÷2 (板书)
强化理解推导过程。
④计算过程中“3+5”表示上、下底之和,它等于拼成的平行四边形的底,所以计算时要加上小括号。
每个梯形的面积等于拼成的平行四边形面积的一半,所以计算中要加上“除以2”?
⑤想一想:如果是两个完全一样的直角梯形,能拼成什么图形?
学生口述,教师点拨:两个完全一样的直角梯形能拼成一个长方形,而长方形是平行四边形的特殊形式。
4.字母公式。
(1)学生看书P.75页上数3~5行。
(2)提问:通过看书,你知道了什么?
引导学生知道:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式可以表示为:
S=(a+b)h÷2 (板书)
(3)要求梯形的面积必须知道哪些条件?为什么要“除以2”?
5.小结:梯形面积的计算公式是怎样推导的?用字母怎样表示梯形的面积公式?
三、应用
1.出示例题:一条新挖的渠道,横截面是梯形(如图),渠口宽2.8米,渠底宽 1.4米,渠深1.2米。它的横截面的面积是多少平方米?
①拿出渠道模型,认识横截面。使学生明白横截面是一个平面。②生试做。
③订正。提问:你是怎样想的?为什么要“除以2”。
2.做一做。
①学生试做。
②订正。提问:计算时应注意哪些问题?
3.判断。
(1)平行四边形面积是梯形面积的2倍。( )
(2)两个面积相等的梯形能拼成一个平行四边形。
4.练习十八第4题
(1)让学生用铅笔代替圆木或钢管摆成图中的形状。
(2)根据公式求出总根数,说一说是什么道理。
使学生体会到:把另外一堆同样形状的钢管倒过来,同原来的一堆摆在一起,每层的根数就变成同样多,即都等于上、下底根数之和,这个和乘以层数得到的根数正好是原来一堆根数的2倍。
5.练习十八第2题。
四、体验
今天学会了什么?怎样计算梯形的面积?梯形面积的计算公式是怎样推导出来的?
五、作业
练习十八第1、3题。
第二课时
练习内容:梯形面积的巩固练习。(练习十八第5~10题。)
练习要求:使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。
练习重点:应用所学的知识解决一些实际问题。
练习过程:
一、基本练习
1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。
7.2÷0.12 2.4÷0.3 0.2×12.6×5
0.38×1000 0.8×25 26.1-3.5-7.5
3.8+2.5+6.2 10÷2.5 4.8×0.2+5.2×0.2
2.看图思考并回答。
(1)怎样计算梯形的面积?
(2)梯形面积的计算公式是怎样推导出来的?
(3)右图所示梯形的面积是多少?
二、指导练习
1.练习十八第6题,名数的改写。
(1)名数的改写方法是什么?根据学生的回答板书:
除以它们之间的进率
低级单位 高级单位
乘它们之间的进率
(2)根据改写的方法将第6题的结果填在课本上。
3.6公顷=( )平方米 1200平方米=( )公顷
4平方千米=( )公顷 52公顷=( )平方千米
160平方厘米=( )平方分米=( )平方米
0.25平方米=( )平方分米=( )平方厘米
(3)集体订正时让学生讲一讲自己的想法。
2.练习十八第8题:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?
(1)生独立审题,分小组讨论解法。
(2)选代表列出解答算式,不计算。
(3)由学生讲所列算式的想法,
(4)指导学生讲“(100+48)×250”为什么不除以2?
(5)学生计算出它的面积,集体订正。
三、课堂练习
1.练习十九第7题:根据表中所给的数值算出每种渠道横截面的面积。
渠口宽(米)
3.1
1.8
2.0
2.0
渠底宽(米)
1.5
1.2
1.0
0.8
渠深(米)
0.8
0.8
0.5
0.6
横截面面积(平方米)
生独立解答出结果并填在课本上,集体订正。
2.练习十八第10题:一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?
四、作业
练习十九第9题。
第三课时
练习内容:混合练习(练习十八第11~15题)
练习要求:使学生进一步掌握平行四边形、三角形和梯形的面积公式,能正确、熟练地计算它们的面积。
练习重点:正确运用公式计算所学的图形的面积。
教具准备:投影
教学过程:
一、基本练习
1.回答下列各图面积地计算公式和字母公式。
长方形 长×宽 ab
正方形 边长×边长 a2
平行四边形 底×高 ah
三角形 底×高÷2 ah÷2
梯形 (上底+下底)×高÷2 (a+b)h÷2
2.平行四边形、三角形、梯形的面积公式是怎样推导出来的?
二、指导练习
1. 练习十八第12题:计算下面每个图形的面积。
3米 8米 12米
5.6米 9.5米 12米
5厘米
5.4
分 5.8厘米 5.2厘米
米
3分米 5厘米 7厘米
⑴省独立审题,计算每个图形的面积。
⑵师巡视,看同学们在计算书三角形和梯形的的面积时是否注意了“除以2”
⑶指6名学生板演,集体订正。
2.练习十八第15题。生独立审题并计算出三角形的面积,注意单位的换算。
三、课堂练习
练习十八第14题
四、攻破难题
1. 16题:一个鱼塘的形状是梯形,它的上底长21米,下底长45米,面积是759平方米。它的高是多少?
分析与解:
⑴已知梯形的面积=(上底+下底)×高÷2
⑵上底+下底=21+45=66米
⑶高=759÷66×2=23米 20厘米
2. 17题:已知右面梯形的上底
是20厘米,下底是34厘米,其中涂色
部分的面积是340平方厘米。这个梯形
的面积是多少? 34厘米
分析与解:要求梯形的面积,但不知道高。根据阴影部分是三角形,又知道三角形的面积和底,可以求出它的高,也就是梯形的高,再算出梯形的面积。
高:340×2÷34=20厘米,
面积:(34+20)×20÷2=540平方厘米
3. 18题:在下面的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?
15厘米
12厘米
25厘米
分析与解:以下底为底,一上底上的任意一点为三角形的顶点剪下的三角形都是最大的。因为所有的三角形的底和高都没有变,剩下的图形可能是一个三角形,也可能是两个三角形。
(15+25)×12÷2=240平方厘米
25×12÷2=150平方厘米
240-150=90平方厘米
4.思考题 4厘米
右图中,梯形的面积是72 12
平方厘米。请你算出阴影 厘
部分的面积。 米
解法一:先算出没有阴影部分
的面积:4×12÷2=24平方厘米,
再用梯形的面积减去这个三角形
的面积:72-24=48平方厘米。
解法二:阴影部分是一个三角形,这个三角形的高是12厘米,底与梯形的下底是同一条线段,先算出梯形的下底:
72×2÷12-4=8厘米
再算阴影部分的面积:8×12÷2=48平方厘米。
五、作业
练习十八11、13题
4.选学内容
第一课时
教学内容:组合图形面积的计算。(例题和做一做,练习十九第1~4题。)
教学要求:
1.使学生理解组合图形的含义,初步了解组合图形面积的计算方法;
2.会计算一些较简单的组合图形的面积,提高学生运用几何初步知识解决实际问题的能力。
教学重点:使学生初步掌握组合图形面积的计算方法,会计算简单的组合图形的面积。
教学难点:能正确地把组合图形分解成几个已学过的图形。
教具准备:投影片若干
教学过程:
一、激发
1.口答下列各图形面积的计算公式,并计算出它们的面积。
2米 3分米
3米 4米 5分米
2厘米
1.2米 10厘米
1.6米 2.5厘米
2.揭题:在实际生活中,我们见到的物体表面,有很多图形是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的,我们把这些图形叫做组合图形。今天我们就学习组合图形面积的计算。板书课题:组合图形面积的计算。
二、尝试
1.投影出示例题:右图表示的是 2米
一间房子侧面墙的形状。它的面积是
5米
多少平方米?
5米
2.引导学生看图思考并回答。
(1)这个组合图形能否分解成几个
我们学过的简单图形?
(2)怎样求这个组合图形的面积呢?
3.生计算出这个组合图形的面积。
(1)生在书上例题下面填空。
(2)集体订正时让学生说说怎样计算组合图形的面积?
(3)师强调指出:计算组合图形的面积,一般是先把它分成几个我们学过的简单图形,分别计算出各个简单图形的面积,然后再把它们加起来,就是整个组合图形的面积。
4.尝试后练习:做一做
新丰小学有一块菜地,形状如
右图。算出这块菜地的面积多少平
方米。
生独立审题,观察菜地的形状,思考将它分成几个什么样的简单图形,再让学生讲一讲,最后计算出这块菜地的面积。集体订正。
三、应用
1.练习十九第3题:量一量少先队的中队旗,算出它的面积。(你能想出不同的解法吗?)
(1)生分组讨论:怎样分成几个我们学过的简单图形?
(2)对分解合理简单的做法在投影仪上显示出来。
(3)生选取一种方法,量出所需长度,再计算出它的面积。
2.练习十九第4题:下面是一种机器零件的横截面图,求出涂色部分的面积是多少平方毫米。
20毫米
10毫米
30毫米 27毫米
54毫米
生独立计算出它的面积,集体订正时讲一讲自己是怎样想的。
四、体验
本节课,你有什么收获?
五、作业
练习十九第1、2题。
查看更多