资料简介
相交线学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共36.0分)1.下列图形中,∠1与∠2是对顶角的有( )A.B.C.D.2.下列说法中正确的有( )①一个角的余角一定比这个角大;②同角的余角相等;③若∠1+∠2+∠3=180∘,则∠1,∠2,∠3互补;④对顶角相等.A.1个B.2个C.3个D.4个3.下列说法正确的是( )(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90°,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A.1个B.2个C.3个D.4个4.下列说法中正确的个数有( )(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个5.如图,直线a,b被直线c所截,∠1与∠2的位置关系是( )A.同位角B.内错角C.同旁内角D.对顶角6.如图所示,∠1和∠2是对顶角的是( )A.B.C.D.7.如图,直线相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.360°11
1.如图,直线a,b相交于点O,OE⊥a于点O,OF⊥b于点O,若∠1=40°,则下列结论正确的是( )A.∠2=∠3=50°B.∠2=∠3=40°C.∠2=40°,∠3=50°D.∠2=50°,3=40°2.已知:如图所示,直线AB、CD相交于O,OD平分∠BOE,∠AOC=42°,则∠AOE的度数为( )A.126°B.96°C.102°D.138°3.如图,∠1和∠2是对顶角的是( )A.B.C.D.4.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为( )A.125°B.115°C.105°D.135°5.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是( )A.75°B.90°C.105°D.125°二、填空题(本大题共5小题,共15.0分)6.如图,直线AB、CD相交于点O,若∠1+∠2=100°,则∠BOC等于______.7.如图,AB与DE相交于点O,OC⊥AB,OF是∠AOE的角平分线,若∠COD=36°,则∠AOF=______.8.如图,把一张长方形纸片ABCD沿EF折叠后,D,C分别落在D',C'的位置上,ED'与BC交于点G.若∠EFG=56°,则∠AEG=__________.11
1.如图,CD⊥AB,垂足为C,∠1=130°,则∠2=______度.2.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=2:3,则∠BOD的度数为_________.三、计算题(本大题共1小题,共6.0分)3.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.四、解答题(本大题共6小题,共48.0分)4.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求:(1)求∠BOE的度数.(2)求∠EOF的度数.11
1.已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.2.如图,直线AB与CD相交于O,OE⊥AB,OF⊥CD.(1)图中与∠AOF互余的角是______,与∠COE互补的角是______;(把符合条件的角都写出来)(2)如果∠AOC=14∠EOF,求∠EOF的度数.11
1.如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.2.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数.(2)若∠EOC:∠EOD=4:5,求∠BOD的度数.3.如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.11
答案和解析1.【答案】A【解析】解:A,∠1与∠2是对顶角,A正确;B,∠1与∠2不是对顶角,B错误;C,∠1与∠2不是对顶角,C错误;D,∠1与∠2不是对顶角,D错误;故选:A.根据对顶角的概念解答即可.本题考查的是对顶角的概念,掌握有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角是解题的关键.2.【答案】B【解析】解:一个角的余角不一定比这个角大,如60°,①错误;同角的余角相等,②正确;两个角的和是180°,这两个角互补,所以互补是指两个角的关系,③错误;对顶角相等,④正确,故选:B.根据余角和补角的概念、对顶角相等进行判断即可.本题考查的是余角和补角的概念、对顶角的性质,掌握对顶角相等、余角和补角的概念是解题的关键.3.【答案】A【解析】【分析】根据定义及定理分别判断各命题,即可得出答案.本题考查对顶角及邻补角的知识,难度不大,注意熟练掌握各定义定理.【解答】解:(1)互为补角的应是两个角而不是三个,故错误;(2)没说明∠A是∠B的余角,故错误;(3)互为邻补角的两个角的平分线互相垂直,故错误;(4)根据对顶角的定义可判断此命题错误.(5)相等角的余角相等,故正确.综上可得(5)正确.故选A.4.【答案】A【解析】【分析】本题考查了平行线的定义、平行线的性质、平行公理等内容,侧重基础知识,值得关注.(1)根据平行线的定义解答;(2)根据平行线的性质解答;(3)根据对顶角的定义解答;(4)根据点到直线的距离的定义解答;(5)根据平行公理解答.【解答】解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;11
(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”故本选项错误;(5)这是平行公理,故本选项正确;故选A.5.【答案】B【解析】解:直线a,b被直线c所截,∠1与∠2是内错角.故选:B.根据内错角的定义求解.本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.6.【答案】C【解析】解:A:∠1和∠2不是对顶角,B:∠1和∠2不是对顶角,C:∠1和∠2是对顶角,D:∠1和∠2不是对顶角.故选:C.根据对顶角的定义对各图形判断即可.本题考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.7.【答案】C【解析】解:∵∠3=∠AOD,∴∠1+∠2+∠3=∠1+∠AOD+∠2=180°,故选C.根据对顶角相等得出∠3=∠AOD,根据平角定义求出即可.本题考查了邻补角、对顶角的应用,主要考查学生的计算能力.8.【答案】C【解析】解:如图所示:∵∠1=40°,OE⊥a于点O,∴∠3=50°,又∵OF⊥b于点O,∴∠2=40°.故选:C.直接利用垂直定义以及结合互余的定义得出答案.此题主要考查了垂直的定义以及互余的定义,正确的把握相关定义是解题关键.9.【答案】B【解析】解:根据对顶角的性质,易得∠AOC=∠BOD=42°,又由OD平分∠BOE,则∠BOE=2∠AOC=84°,11
则∠AOE=180°-84°=96°.故选B.根据对顶角的性质,易得∠AOC=∠BOD,而OD平分∠BOE,则∠BOE=2∠AOC,∠AOE与∠BOE又互补,即可得答案.本题涉及到角的计算,注意结合图形,把握角平分线的性质,角与角之间的关系解题.10.【答案】B【解析】解:A、∠1和∠2不是对顶角,不合题意;B、∠1和∠2是对顶角,符合题意;C、∠1和∠2不是对顶角,不合题意;D、∠1和∠2不是对顶角,不合题意.故选:B.根据对顶角的定义对各图形判断即可.本题考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.11.【答案】C【解析】解:∵∠1=15°,∠AOC=90°,∴∠BOC=75°,∵∠2+∠BOC=180°,∴∠2=105°.故选:C.由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2.利用补角和余角的定义来计算,本题较简单.12.【答案】B【解析】【分析】本题考查了角的计算,解决本题的关键是利用补角求出∠BOC.由图示可得,∠2与∠BOC互补,结合已知可求∠BOC,又因为∠AOC=∠COB+∠1,即可解答.【解答】解:∵∠2=105°,∴∠BOC=180°-∠2=75°,∴∠AOC=∠1+∠BOC=15°+75°=90°.故选B.13.【答案】130°【解析】【分析】本题考查了对顶角相等,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.根据对顶角相等可得∠1=∠2,再求出∠1,然后根据邻补角的定义列式计算即可得解.【解答】解:由对顶角相等可得,∠1=∠2,∵∠1+∠2=100°,∴∠1=50°,∴∠BOC=180°-∠1=180°-50°=130°.故答案为:130°.14.【答案】27°11
【解析】【分析】本题考查了垂线以及角平分线的定义,通过角的计算找出∠AOE=54°是解题的关键,由垂直的定义可得出∠AOC=90°,通过角的计算可得出∠AOE=54°,再根据角平分线的定义即可得出∠AOF的度数.【解答】解:∵OC⊥AB,∴∠AOC=90°.∵∠COD+∠AOC+∠AOE=180°,∠COD=36°,∴∠AOE=54°.又∵OF是∠AOE的角平分线,∴∠AOF=12∠AOE=27°.故答案为27°.15.【答案】68°【解析】解:∵AD//BC,∴∠DEF=∠GFE=56°,由折叠可得,∠GEF=∠DEF=56°,∴∠DEG=112°,∴∠AEG=180°-112°=68°.故答案为:68°先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.本题以折叠问题为背景,主要考查了平行线的性质,解题时注意:矩形的对边平行,且折叠时对应角相等.16.【答案】40【解析】解:由图知,∠1和∠ACE是对顶角,∴∠1=∠ACE=130°,即∠ACD+∠2=130°,∵CD⊥AB,∴∠ACD=90°,∴130°=90°+∠2,解得∠2=40°.利用相交线寻找已知角∠1的对顶角,可以建立已知角∠1与所求角∠2之间的等量关系,可求∠2.利用了对顶角的性质求解.17.【答案】36°【解析】略18.【答案】解:(1)∵OE平分∠BOC,∠BOE=70°,∴∠BOC=2∠BOE=140°,∴∠AOC=180°-140°=40°,又∠COF=90°,11
∴∠AOF=90°-40°=50°;(2)∵∠BOD:∠BOE=1:2,OE平分∠BOC,∴∠BOD:∠BOE:∠EOC=1:2:2,∴∠BOD=36°,∴∠AOC=36°,又∵∠COF=90°,∴∠AOF=90°-36°=54°.【解析】(1)根据角平分线的定义求出∠BOC的度数,根据邻补角的性质求出∠AOC的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.本题考查的是对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.19.【答案】解:(1)∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OE平分∠BOD,∴∠BOE=12∠BOD=36°;(2)∵OF⊥CD,∴∠BOF=90°-72°=18°,∵∠EOF=∠BOF+∠BOE,∴∠EOF=36°+18°=54°.【解析】本题考查了对顶角、邻补角、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.(1)由∠BOD=∠AOC=72°,再由OE平分∠BOD,得出∠BOE=12∠BOD=36°,(2)由OF⊥CD,求出∠BOF=90°-72°=18°,∠EOF=∠BOF+∠BOE,得出∠EOF的度数.20.【答案】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°-∠AOC-∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×11+5=30°,∴∠AOC=30°,∴∠AOE=30°+90°=120°;(3)如图1,∠EOF=120°-90°=30°,或如图2,∠EOF=360°-120°-90°=150°.故∠EOF的度数是30°或150°.11
【解析】(1)根据平角的定义求解即可;(2)根据平角的定义可求∠BOD,根据对顶角的定义可求∠AOC,根据角的和差关系可求∠AOE的度数;(3)先过点O作OF⊥AB,再分两种情况根据角的和差关系可求∠EOF的度数.本题主要考查了角的计算,涉及到的角有平角、直角;熟练掌握平角等于180度,直角等于90度,是解答本题的关键.21.【答案】(1)∠AOC、∠BOD ∠EOD、∠BOF (2)∵OE⊥AB,OF⊥CD,∴∠EOB=90°,∠FOD=90°,又∵∠AOC=14∠EOF,设∠AOC=x,则∠BOD=x,∠EOF=4x,根据题意可得:4x+x+90+90=360°,解得:x=36°.∴∠EOF=4x=144°.【解析】解:(1)图中与∠AOF互余的角是:∠AOC、∠BOD;图中与∠COE互补的角是:∠EOD、∠BOF.(2)见答案【分析】(1)根据互余及互补的定义,结合图形进行判断即可;(2)设∠AOC=x,则∠BOD=x,∠EOF=4x,根据周角为360度,即可解出x.本题考查了余角和补角的知识,注意结合图形进行求解.22.【答案】解:由角的和差,得∠EOF=∠COE-∠COF=90°-28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF-∠COF=62°-28°=34°.由对顶角相等,得∠BOD=∠AOC=34°.【解析】根据角的和差,可得∠EOF的度数,根据角平分线的性质,可得∠AOC的度数,根据补角的性质,可得答案.本题考查了对顶角、邻补角,利用了角的和差,角平分线的性质,对顶角的性质.23.【答案】解:(1)∵∠EOC=70°,OA平分∠EOC,∴∠AOC=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=4x,则∠EOD=5x,∴5x+4x=180°,解得x=20°,则∠EOC=80°,又∵OA平分∠EOC,∴∠AOC=40°,∴∠BOD=∠AOC=40°.【解析】(1)根据角平分线的定义求出∠AOC的度数,根据对顶角相等得到答案;(2)设∠EOC=4x,根据邻补角的概念列出方程,解方程求出∠EOC=80°,根据角平分线的定义和对顶角相等计算即可得到答案.本题考查的是对顶角、邻补角的概念和性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.24.【答案】解:∵∠AOC=80°,11
∴∠BOD=∠AOC=80°,∵OF平分∠DOB,∴∠DOF=12∠DOB=40°,∵OE⊥AB,∴∠AOE=90°,∵∠AOC=80°,∴∠EOD=180°-90°-80°=10°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.【解析】根据对顶角得出∠BOD=∠AOC=80°,根据角平分线定义求出∠DOF=12∠DOB=40°,求出∠AOE=90°,求出∠EOD=10°,代入∠EOF=∠EOD+∠DOF求出即可.本题考查了垂直定义,邻补角、对顶角等知识点,能求出∠DOE和∠DOF的度数是解此题的关键.11
查看更多