返回

资料详情(天天资源网)

资料简介

5三角形内角和定理第2课时 1.证明命题的一般步骤:(1)理解题意:分清命题的条件(已知),结论(求证);(2)根据题意,画出图形;(3)结合图形,用符号语言写出“已知”和“求证”; (4)分析题意,探索证明思路(由“因”导“果”,执“果”索“因”.);(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;(6)检查表达过程是否正确,完善. 2.三角形内角和定理:三角形三个内角的和等于180°.△ABC中,∠A+∠B+∠C=180°.∠A+∠B+∠C=180°的几种变形:∠A=180°–(∠B+∠C).∠B=180°–(∠A+∠C).∠C=180°–(∠A+∠B).∠A+∠B=180°-∠C.∠B+∠C=180°-∠A.∠A+∠C=180°-∠B.这里的结论,以后可以直接运用.ABC 如图.∠1是△ABC的一个外角,∠1与图中的其他角有什么关系?∠1+∠4=180°;∠1>∠2;∠1>∠3;∠1=∠2+∠3.ABCD1234 证明:∵∠2+∠3+∠4=180°(三角形内角和定理),∠1+∠4=180°(平角的定义),∴∠1=∠2+∠3.(等量代换).∴∠1>∠2,∠1>∠3(和大于部分).用文字表述为:三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角. 在这里,我们通过三角形的内角和定理直接推导出两个新定理.像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论.推论可以当做定理使用.三角形内角和定理的推论:定理:三角形的一个外角等于和它不相邻的两个内角的和.定理:三角形的一个外角大于任何一个和它不相邻的内角.ABCD1234 ABCD1234△ABC中:∠1=∠2+∠3;∠1>∠2,∠1>∠3.这个结论以后可以直接运用. 例1已知:如图,在△ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC.分析:要证明AD∥BC,只需要证明“同位角相等”或“内错角相等”或“同旁内角互补”.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和),∠B=∠C(已知),∴∠C=∠EAC(等式的性质).∵AD平分∠EAC(已知).∴∠DAC=∠EAC(角平分线的定义).∴∠DAC=∠C(等量代换).∴AD∥BC(内错角相等,两直线平行).ACDBE例题是运用了定理“内错角相等,两直线平行”得到了证实.【例题】 例1已知:如图,在△ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC.分析:要证明AD∥BC,只需要证明“同位角相等”或“内错角相等”或“同旁内角互补”.证明:推理可得:∠DAC=∠C(已证),∵∠BAC+∠B+∠C=180°(三角形内角和定理).∴∠BAC+∠B+∠DAC=180°(等量代换).∴AD∥BC(同旁内角互补,两直线平行).总结这里是运用了定理“同旁内角互补,两直线平行”得到了证实.ACDBE 例2已知:如图,在△ABC中,∠1是它的一个外角,E为边AC上一点,延长BC到D,连接DE.求证:∠1>∠2.CABF1345ED2【例题】 证明:∵∠1是△ABC的一个外角(已知),∴∠1>∠3(三角形的一个外角大于任何一个和它不相邻的内角).∵∠3是△CDE的一个外角(外角定义).∴∠3>∠2(三角形的一个外角大于任何一个和它不相邻的内角).∴∠1>∠2(不等式的性质).把你所悟到的证明一个真命题的方法,步骤,书写格式以及注意事项转化为一种方法. ABCD1.已知:如图所示,在△ABC中,外角∠DCA=100°,∠A=45°.求:∠B和∠ACB的大小.【跟踪训练】 【解析】∵∠DCA是△ABC的一个外角(已知),∠DCA=100°(已知),∠A=45°(已知),∴∠B=100°-45°=55°.(三角形的一个外角等于和它不相邻的两个内角的和).又∵∠DCA+∠BCA=180°(平角定义).∴∠ACB=80°(等式的性质). 2.已知:国旗上的正五角星形如图所示.求:∠A+∠B+∠C+∠D+∠E的度数.分析:设法利用外角把这五个角“凑”到一个三角形中,运用三角形内角和定理来求解.ABCDEF1H2 【解析】∵∠1是△BDF的一个外角(外角的定义),∴∠1=∠B+∠D(三角形的一个外角等于和它不相邻的两个内角的和).又∵∠2是△EHC的一个外角(外角的定义),∴∠2=∠C+∠E(三角形的一个外角等于和它不相邻的两个内角的和).又∵∠A+∠1+∠2=180°(三角形内角和定理).∴∠A+∠B+∠C+∠D+∠E=180°(等式的性质). 3.已知:如图所示.求证:∠BDC>∠A.证明:(1)∵∠BDC是△DCE的一个外角(外角定义),∴∠BDC>∠CED(三角形的一个外角大于和它不相邻的任何一个内角).∵∠DEC是△ABE的一个外角(外角定义),∴∠DEC>∠A(三角形的一个外角大于和它不相邻的任何一个内角).∴∠BDC>∠A.(不等式的性质)BCADE 1.(河北·中考)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°【解析】选C.根据三角形外角的性质可得,∠ACD=∠B+∠A,所以∠A=∠ACD-∠B=120°-40°=80°. 2.如图,AB∥CD,则下列说法正确的是()A.∠3=2∠1+∠2B.∠3=2∠1-∠2C.∠3=∠1+∠2D.∠3=180°-∠1-∠2【解析】选C.∵AB∥CD,∴∠1=∠BCD,∠3是△COD的外角,∴∠3=∠2+∠BCD=∠2+∠1. 3.如图,直线a∥b,则∠ACB=_______.【解析】延长BC交直线a于点D,∵直线a∥b,∴∠ADC=∠B=50°.∵∠ACB是△ACD的外角,∴∠ACB=∠A+∠ADC=28°+50°=78°.答案:78° 4.如图,已知CE为△ABC外角∠ACD的平分线,CE交BA的延长线于点E,求证:∠BAC>∠B.【证明】∵CE平分∠ACD∴∠1=∠2∵∠BAC>∠1∴∠BAC>∠2∵∠2>∠B∴∠BAC>∠B 理解几何命题证明的方法,步骤,格式及注意事项.三角形内角和定理.三角形三个内角的和等于180°.△ABC中,∠A+∠B+∠C=180°.推论1:三角形的一个外角等于和它不相邻的两个内角的和.推论2:三角形的一个外角大于任何一个和它不相邻的内角. 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭