资料简介
10.2等腰三角形(2)一、教学目标:1、进一步掌握证明的基本步骤和书写格式。2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等。二、教学重点:正确叙述结论及正确写出证明过程。通过学习,掌握证明的基本步骤和书写格式。教学难点:等腰三角形的定理应用。三、教学方法:探究式教学法、自主探究与合作探究四、教学过程:复习回顾:你知道等腰三角形具有怎样的性质吗?探索——发现——猜想——证明1、引导探索:等腰三角形顶角的平分线、底边上的中线和高线具有上述的性质,那么,两底角的平分线、两腰上的中线和高线又具有怎样的性质呢?(提出问题,激发学生探究的欲望。学生猜想)2、探究中发现:在等腰三角形中做出两底角的平分线,你会发现图中有那些相等的线段?你能用文字叙述你的结论吗?(学生动手画图、探索发现相等的线段并思考为什么相等)ACBDE3、证明:(1)例1证明:等腰三角形两底角的平分线相等。(引导学生分清条件和结论、画图、写出已知、求证。)已知:如图,在△ABC中,AB=AC,BD,CE是△ABC的角平分线。求证:BD=CE(一生口述证明过程,然后写出证明过程。)证明:(略)此题还有其它的证法吗?(2)你能证明等腰三角形两条腰上的中线相等吗?高呢?(引导学生分清条件和结论、画图、写出已知、求证并证明。其它证法合作交流完成。)2/2
4、典型例题:例2已知:如图,点D,E在ΔABC的边AB上,AB=AC,AD=AE.求证:BD=CE。证明:作AF⊥BC,垂足为点F,则AF⊥DE。∵AB=AC,AD=AE。∴BF=CF,DF=EF。(等腰三角形底边上的中线、底边上的高互相重合)∴BF-DF=CF-EF,即BD=CE。课堂小结1:(1)归纳判定等腰三角形判定有几种方法?(2)证明两条线段相等的方法有哪几种。(讨论、交流)随堂练习:已知:如图,∠CAE是△ABC的外角,AD∥BC,且∠1=∠2。求证:AB=AC。(引导学生分析证明方法,学生动手证明,写出证明过程。)五、作业:习题10.5六、板书设计:§10.2等腰三角形(2)探索——发现——猜想——证明七、课后记:2/2
查看更多