返回

资料详情(天天资源网)

资料简介

第23章二次函数23.1成比例线段23.1.2平行线分线段成比例 1.掌握“平行线分线段成比例”的基本事实;(重点)2.掌握平行于三角形一边的直线的性质;(重点)3.能根据以上掌握的内容解决相关问题.(难点)学习目标 问题1:什么是成比例线段?问题2:你能不通过测量快速将一根绳子分成两部分,使得这两部分的比是2:3?问题引入 如图,小方格的边长都是1,直线a∥b∥c,分别交直线m、n于(1)计算你有什么发现?1平行线分线段成比例新课讲解 (2) 将直线b向下平移到如下图的位置,直线m、n与直线b的交点分别为.你在问题(1)中发现的结论还成立吗?如果将b平移到其他位置呢?结论还成立,直线b平移到其他位置依然成立.新课讲解 (3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?若a∥b∥c,则.符号语言:成比例两条直线被一组平行线所截,所得的对应线段成比例.(简称“平行线分线段成比例”)归纳新课讲解 1.如何理解“对应线段”?2.“对应线段”成比例都有哪些表达形式?议一议新课讲解 如图1,直线a∥b∥c,分别交直线m、n于A1、A2、A3,B1、B2、B3.过点A1作直线n的平行线,分别交直线b、c于点C1、C2.如图2,图2中有哪些成比例线段?图1图2mnmnA1A2A3B1B2B3A1A2A3B1B2B3C1C2abcabc2平行于三角形一边的直线的性质新课讲解 ★推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.★成比例线段:新课讲解 如图,在△ABC中,EF∥BC.(1)如果E、F分别是AB和AC上的点,AE=BE=7,FC=4,那么AF的长是多少?(2)如果AB=10,AE=6,AF=5,那么FC的长是多少?ABCEF例题新课讲解 1.直线l1//l2//l3,l4、l5、l6被l1、l2、l3所截且AB=BC,则图中还有哪些线段相等?思考:当平行线之间的距离相等时,对应线段的比是多少?l5l6ADMl4l3l2BCEFNOl1DE=EF,MN=ON.对应线段的比是1.随堂即练 2.如图,在△ABC中,D、E分别是AB和AC上的点,且DE∥BC.(1)如果AD=3.2cm,DB=1.2cm,AE=2.4cm,那么EC的长是多少?(2)如果AB=5cm,AD=3cm,AC=4cm,那么EC的长是多少?ABCDE随堂即练 1.两条直线被一组平行线所截,所得的对应线段成比例;2.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.课堂总结 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭