资料简介
第二章 2.4 等比数列 第一课时 等比数列的概念及通项公式课时分层训练1.如果数列{an}是等比数列,那么( )A.数列{a}是等比数列 B.数列{2}是等比数列C.数列{lgan}是等比数列D.数列{nan}是等比数列解析:选A 利用等比数列的定义验证即可.2.(2019·信阳调研)已知等比数列{an}的公比q>0,且a5·a7=4a,a2=1,则a1=( )A.B.C.D.2解析:选B 因为{an}是等比数列,所以a5a7=a=4a,所以a6=2a4,q2==2,又q>0,所以q=,a1==.故选B.3.在首项a1=1,公比q=2的等比数列{an}中,当an=64时,项数n等于( )A.4B.5C.6D.7解析:选D 因为an=a1qn-1,所以1×2n-1=64,即2n-1=26,得n-1=6,解得n=7.故选D.4.若{an}为等比数列,且2a4=a6-a5,则公比为( )A.0B.1或-2C.-1或2D.-1或-2解析:选C 设等比数列的公比为q,由2a4=a6-a5得,2a4=a4q2-a4q,∵
a4≠0,∴q2-q-2=0,解得q=-1或2.故选C.5.等比数列{an}中,|a1|=1,a5=-8a2,a5>a2,则an等于( )A.(-2)n-1B.-(-2)n-1C.(-2)nD.-(-2)n解析:选A 设公比为q,则a1q4=-8a1q,又a1≠0,q≠0,所以q3=-8,q=-2,又a5>a2,所以a20,从而a1>0,即a1=1,故an=(-2)n-1.故选A.6.等比数列{an}中,a1=-2,a3=-8,则an=.解析:∵=q2,∴q2==4,即q=±2.当q=-2时,an=a1qn-1=-2×(-2)n-1=(-2)n;当q=2时,an=a1qn-1=-2×2n-1=-2n.答案:(-2)n或-2n7.已知等比数列{an}的前三项依次为a-1,a+1,a+4,则an=.解析:由已知可得(a+1)2=(a-1)(a+4),解得a=5,所以a1=4,a2=6,所以q===,所以an=4×n-1.答案:4×n-18.数列{an}的前n项和为Sn,若Sn=2an-1,则an=.解析:∵Sn=2an-1,①∴Sn-1=2an-1-1(n≥2),②①-②得an=2an-2an-1,即an=2an-1.∵S1=a1=2a1-1,即a1=1,∴数列{an}为首项是1,公比是2的等比数列,故an=2n-1.答案:2n-1
9.已知数列{an}的前n项和Sn=2-an,求证:数列{an}是等比数列.证明:∵Sn=2-an,∴Sn+1=2-an+1.∴an+1=Sn+1-Sn=(2-an+1)-(2-an)=an-an+1.∴an+1=an.又∵S1=2-a1,∴a1=1≠0.又由an+1=an知an≠0,∴=.∴{an}是等比数列.10.已知:a,-,b,-,c这五个数成等比数列,求a,b,c的值.解:由题意知b2=×=6,∴b=±.当b=时,ab=2,解得a=.bc=2=10,解得c=7.同理,当b=-时,a=-,c=-7.综上所述,a,b,c的值分别为,,7或-,-,-7.1.已知等比数列{an}满足a1=3,且4a1,2a2,a3成等差数列,则此数列的公比等于( )A.1B.2C.-2D.-1解析:选B 设等比数列{an}的公比为q,因为4a1,2a2,a3
成等差数列,所以4a1q=4a1+a1q2,即q2-4q+4=0,解得q=2.故选B.2.在数列{an}中,a1=2,当n为奇数时,an+1=an+2;当n为偶数时,an+1=2an-1,则a12等于( )A.32B.34C.66D.64解析:选C 依题意,a1,a3,a5,a7,a9,a11构成以2为首项,2为公比的等比数列,故a11=a1×25=64,a12=a11+2=66.故选C.3.设数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n∈N*),则S6=( )A.44B.45C.×(46-1)D.×(45-1)解析:选B 由an+1=3Sn,得a2=3S1=3.当n≥2时,an=3Sn-1,则an+1-an=3an,n≥2,即an+1=4an,n≥2,则数列{an}从第二项起构成等比数列,所以S6===45.故选B.4.若等差数列{an}和等比数列{bn}满足a1=b1=-1,a4=b4=8,则=( )A.-1B.1C.D.-2解析:选B 设等差数列{an}的公差为d,等比数列{bn}的公比为q,则a4=-1+3d=8,解得d=3;b4=-1·q3=8,解得q=-2.所以a2=-1+3=2,b2=-1×(-2)=2,所以=1.故选B.5.(2017·全国卷Ⅲ)设等比数列{an}满足a1+a2=-1,a1-a3=-3,则a4=.解析:设等比数列{an}的公比为q,则a1+a2=a1(1+q)=-1,a1-a3=a1(1-q2)=-3,
两式相除,得=,解得q=-2,a1=1,所以a4=a1q3=-8.答案:-86.若数列{an}的前n项和为Sn,且an=2Sn-3,则{an}的通项公式是.解析:由an=2Sn-3得,an-1=2Sn-1-3(n≥2),两式相减得an-an-1=2an(n≥2),∴an=-an-1(n≥2),即=-1(n≥2).故{an}是公比为-1的等比数列,令n=1得a1=2a1-3,∴a1=3,故an=3×(-1)n-1.答案:an=3×(-1)n-17.已知a,1,b成等差数列,a2,1,b2成等比数列,则=.解析:∵a,1,b成等差数列,∴a+b=2.又∵a2,1,b2成等比数列,∴a2b2=1,∴ab=±1,∴a2+b2=(a+b)2-2ab=4±2,∴=1或=.答案:1或8.数列{an}满足a1=-1,且an=3an-1-2n+3(n∈N*且n≥2).(1)求a2,a3,并证明:数列{an-n}是等比数列;(2)求数列{an}的通项公式.解:(1)∵a1=-1,an=3an-1-2n+3,∴a2=3a1-2×2+3=-4,a3=3a2-2×3+3=-15.下面证明{an-n}是等比数列:
∵===3(n=1,2,3,…).又a1-1=-2,∴{an-n}是以-2为首项,以3为公比的等比数列.(2)由(1)知an-n=-2×3n-1,∴an=n-2×3n-1.
查看更多