返回

资料详情(天天资源网)

资料简介

第五章二元一次方程组5.2求解二元一次方程组(第1课时代入法) 1.掌握代入消元法的意义;2.会用代入法解二元一次方程组;(重点、难点)学习目标 情境引入“曹冲称象”的故事把大象的体重转化为石块的重量生活中解决问题的方法导入新课 问题:一个苹果和一个梨的质量合计200g,这个苹果的质量加上一个10g的砝码恰好与这个梨的质量相等,问苹果和梨的质量各是多少g?用代入法解二元一次方程组知识点1讲授新课 +=200xy=+10xy+10+=200xx x+y=200y=x+10(x+10)x+(x+10)=200①②x=95y=105∴方程组的解是y=x+10x+y=200x=95,y=105.求方程组解的过程叫作解方程组.将未知数的个数由多化少,逐一解决的思想,叫作消元思想.转化 要点归纳解二元一次方程组的基本思路“消元”二元一次方程组一元一次方程消元转化用“代入”的方法进行“消元”,这种解方程组的方法称为代入消元法,简称代入法.代入法是解二元一次方程组常用的方法之一. 典例精析将y=1代入②,得x=4.经检验,x=4,y=1适合原方程组.所以原方程组的解是x=5,y=2.解:将②代入①,得3(y+3)+2y=143y+9+2y=145y=5y=1.例1:解方程组3x+2y=14①x=y+3②检验可以口算或在草稿纸上验算,以后可以不必写出. 将y=2代入③,得x=5.所以原方程组的解是x=5,y=2.解:由②,得x=13-4y③将③代入①,得2(13-4y)+3y=1626–8y+3y=16-5y=-10y=2例2:解方程组2x+3y=16①x+4y=13② x-y=3,3x-8y=14.转化代入求解回代写解①②所以这个方程组的解是x=2,y=-1.把y=-1代入③,得x=2.把③代入②,得3(y+3)-8y=14.解:由①,得x=y+3.③注意:检验方程组的解.例3解方程组解这个方程,得y=-1.思考:把③代入①可以吗? 观察上面的方程和方程组,你能发现二者之间的联系吗?请你尝试求得方程组的解。(先试着独立完成,然后与你的同伴交流做法)1.为什么能替换?代表了同一个量二元一次方程组一元一次方程消元2.代入前后的方程组发生了怎样的变化?(代入的作用)化归思想代入 做一做若方程5x2m+n+4y3m-2n=9是关于x,y的二元一次方程,求m,n的值.解:根据已知条件可列方程组:2m+n=13m–2n=1①②由①得把③代入②得:n=1–2m③3m–2(1–2m)=1把m代入③,得: 例4根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t,这些消毒液应该分装大、小瓶两种产品各多少瓶?等量关系:⑴大瓶数小瓶数⑵大瓶所装消毒液小瓶所装消毒液总生产量.代入法解二元一次方程组的简单应用知识点2 解:设这些消毒液应该分装x大瓶、y小瓶.根据题意可列方程组:③①由得:把代入得:③②解得:x=20000把x=20000代入得:y=50000③答:这些消毒液应该分装20000大瓶和50000小瓶.①②îíì=+=2250000025050025yxyx 二元一次方程组消去一元一次方程变形代入解得解得用代替,消去未知数50000y=再议代入消元法 总结归纳解二元一次方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.第三步:解这个一元一次方程,得到一个未知数的值.第四步:回代求出另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验(口算或在草稿纸上进行笔算),即把求得的解代入每一个方程看是否成立. 用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形. 练一练:篮球联赛中,每场比赛都要分出胜负,胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到35分,那么这个队胜负场数分别是多少?解设胜的场数是x,负的场数是y,可列方程组:由①得y=20-x.③将③代入②,得2x+20-x=35.解得x=15.将x=15代入③得y=5.则这个方程组的解是答:这个队胜15场,负5场.①② y=2x,x+y=12;(1)(2)2x=y-5,4x+3y=65.解:(1)x=4y=8(2)1.用代入消元法解下列方程组.x=5y=15随堂练习 2.把下列方程分别用含x的式子表示y,含y的式子表示x:(1)2x-y=3;(2)3x+2y=1. 3.二元一次方程组的解是()A.B.C.D.D 4.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:x+y=10①2000x+1500y=18000②将由①得y=10-x.③将③代入②,得2000x+1500(10-x)=18000.解得x=6.将x=6代入③,得y=4.答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩. 解二元一次方程组基本思路“消元”代入法解二元一次方程组的一般步骤变:用含一个未知数的式子表示另一个未知数代:用这个式子替代另一个方程中相应未知数求:求出两个未知数的值写:写出方程组的解课堂小结 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭