资料简介
2.2平方根第1课时算术平方根教学目标1.了解平方根的概念,会用根号表示一个数的平方根;(重点)2.了解开平方与平方是互逆运算,会用开平方运算求非负数的平方根.(难点)教学过程一、情境导入填空:(1)3的平方等于9,那么9的算术平方根就是________;(2)的平方等于,那么的算术平方根就是________;(3)展厅的地面为正方形,其面积是49平方米,则边长为________米.平方等于9,,49的数还有吗?二、合作探究探究点一:平方根的概念及性质【类型一】求一个数的平方根求下列各数的平方根:(1)1;(2)0.0001;(3)(-4)2;(4).解析:把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根.解:(1)∵1=,(±)2=,∴1的平方根为±,即±=±;(2)∵(±0.01)2=0.0001,∴0.0001的平方根是±0.01,即±=±0.01;(3)∵(±4)2=(-4)2,∴(-4)2的平方根是±4,即±=±4;(4)∵(±3)2=9=,∴的平方根是±3.方法总结:正确理解平方根的概念,明确是求哪一个数的平方根.如(4)中就是求9的平方根.【类型二】利用平方根的性质求数的值一个正数的两个平方根分别是2a+1和a-4,求这个数.解析:因为一个正数的平方根有两个,且它们互为相反数,所以2a+1和a-4互为相反数,根据互为相反数的两个数的和为0列方程求解.解:由于一个正数的两个平方根是2a+1和a-4,则有2a+1+a-4=0.即3a-3=0,解得a=1.所以这个数为(2a+1)2=(2+1)2=9.方法总结:一个正数的平方根有两个,它们互为相反数,即它们的和为零.探究点二:开平方及相关运算求下列各式中x的值.(1)x2=361;(2)81x2-49=0;(3)(3x-1)2=(-5)2.-2-
解析:若x2=a(a≥0),则x=±,先把各题化为x2=a的形式,再求x.其中(3)中可将(3x-1)看作一个整体,先通过开平方求出这个整体的值,然后解方程求出x.解:(1)∵x2=361,∴开平方得x=±=±19;(2)整理81x2-49=0,得x2=,∴开平方得x=±=±;(3)∵(3x-1)2=(-5)2,∴开平方得3x-1=±5;当3x-1=5时,x=2;当3x-1=-5时,x=-;综上所述,x=2或-.方法总结:利用平方根的定义进行开平方解方程,从而求出未知数的值,一个正数的平方根有两个,它们互为相反数;开平方时,不要漏掉负平方根.三、板书设计1.平方根的概念:若x2=a,则x叫a的平方根,x=±.2.平方根的性质:正数有两个平方根,且它们互为相反数;0的平方根是0;负数没有平方根.3.开平方及相关运算:求一个数a的平方根的运算叫做开平方,其中a叫做被开方数.开平方与平方互为逆运算.教学反思为学生提供有趣且富有数学含义的问题,让学生进行充分的探索和交流.如把正方形的面积不断地扩大为原来的2倍、3倍、n倍,引导学生充分进行交流、讨论与探索,从中感受学习平方根的必要性.-2-
查看更多