返回

资料详情(天天资源网)

天天资源网 / 初中数学 / 教学同步 / 北师大版(2012) / 八年级上册 / 第二章 实数 / 数学北师大8上第2章实数单元测试卷含答案解析

还剩 5 页未读,点击继续阅读

继续阅读

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载
有任何问题请联系天天官方客服QQ:403074932

资料简介

北师大新版八年级数学上册《第2章实数》单元测试一、选择题1.下面四个实数,你认为是无理数的是(  )A.B.C.3D.0.32.下列四个数中,是负数的是(  )A.|﹣2|B.(﹣2)2C.﹣D.3.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是(  )A.①④B.②③C.①②④D.①③④4.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为(  )A.2a+bB.﹣2a+bC.bD.2a﹣b5.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?(  )A.k<m=nB.m=n<kC.m<n<kD.m<k<n6.下列说法:①5是25的算术平方根;②是的一个平方根;③(﹣4)2的平方根是﹣4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有(  )A.1个B.2个C.3个D.4个7.下列计算正确的是(  ) A.=×B.=﹣C.=D.=8.如图,下列各数中,数轴上点A表示的可能是(  )A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根9.下列各式正确的是(  )A.B.C.D.10.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为(  )A.3B.4C.5D.6 二、填空题11.﹣的相反数是  .12.16的算术平方根是  .13.写出一个比﹣3大的无理数是  .14.化简﹣=  .15.比较大小:2  π(填“>”、“<”或“=”).16.已知一个正数的平方根是3x﹣2和5x+6,则这个数是  .17.若x,y为实数,且|x+2|+=0,则(x+y)2014的值为  .18.已知m=,则m2﹣2m﹣2013=  . 三、解答题(共66分)19.(2012﹣π)0﹣()﹣1+|﹣2|+;(2)1+(﹣)﹣1﹣÷()0. 20.先化简,再求值:(1)(a﹣2b)(a+2b)+ab3÷(﹣ab),其中a=,b=;(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.21.有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):  ;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).22.计算:(1)++﹣;(2)2÷×;(3)(﹣4+3)÷2.23.甲同学用如图方法作出C点,表示数,在△OAB中,∠OAB=90°,OA=2,AB=3,且点O,A,C在同一数轴上,OB=OC(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所给数轴上描出表示﹣的点A.24.如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,,2. 25.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=  .②参照(三)式化简=  .(2)化简:+++…+.  参考答案与试题解析一、选择题1.下面四个实数,你认为是无理数的是(  )A.B.C.3D.0.3【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:、3、0.3是有理数,是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 2.下列四个数中,是负数的是(  )A.|﹣2|B.(﹣2)2C.﹣D.【考点】实数的运算;正数和负数.【分析】根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项分析判断后利用排除法求解.【解答】解:A、|﹣2|=2,是正数,故本选项错误;B、(﹣2)2=4,是正数,故本选项错误;C、﹣<0,是负数,故本选项正确;D、==2,是正数,故本选项错误.故选C.【点评】本题考查了实数的运用,主要利用了绝对值的性质,有理数的乘方,以及算术平方根的定义,先化简是判断正、负数的关键. 3.设边长为3的正方形的对角线长为a.下列关于a的四种说法: ①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是(  )A.①④B.②③C.①②④D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性. 4.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为(  )A.2a+bB.﹣2a+bC.bD.2a﹣b【考点】二次根式的性质与化简;实数与数轴.【分析】现根据数轴可知a<0,b>0,而|a|>|b|,那么可知a+b<0,再结合二次根式的性质、绝对值的计算进行化简计算即可.【解答】解:根据数轴可知,a<0,b>0, 原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选C.【点评】本题考查了二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 5.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?(  )A.k<m=nB.m=n<kC.m<n<kD.m<k<n【考点】二次根式的性质与化简.【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键. 6.下列说法:①5是25的算术平方根;②是的一个平方根;③(﹣4)2的平方根是﹣4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有(  )A.1个B.2个C.3个D.4个【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根以及立方根逐一分析4条结论的正误,由此即可得出结论.【解答】解:①∵52=25,∴5是25的算术平方根,①正确; ②∵=,∴是的一个平方根,②正确;③∵(±4)2=(﹣4)2,∴(﹣4)2的平方根是±4,③错误;④∵02=03=0,12=13=1,∴立方根和算术平方根都等于自身的数是0和1,正确.故选C.【点评】本题考查了方根、算术平方根以及立方根,解题的关键是根据算术平方根与平方根的定义找出它们的区别. 7.下列计算正确的是(  )A.=×B.=﹣C.=D.=【考点】二次根式的混合运算.【分析】根据二次根式的性质对各个选项进行计算,判断即可.【解答】解:=×,A错误;=,B错误;是最简二次根式,C错误;=,D正确,故选:D.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质是解题的关键. 8.如图,下列各数中,数轴上点A表示的可能是(  )A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根【考点】估算无理数的大小. 【分析】先根据数轴判断A的范围,再根据下列选项分别求得其具体值,选取最符合题意的值即可.【解答】解:根据数轴可知点A的位置在2和3之间,且靠近3,而=2,<2,2<=2<3,=2,只有8的算术平方根符合题意.故选C.【点评】此题主要考查了利用数轴确定无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法. 9.下列各式正确的是(  )A.B.C.D.【考点】二次根式的性质与化简.【分析】根据二次根式的运算性质化简.【解答】解:A、原式=,错误;B、被开方数不同,不能合并,错误;C、运用了平方差公式,正确;D、原式==,错误.故选C.【点评】本题考查了二次根式的化简,注意要化简成最简二次根式. 10.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为(  )A.3B.4C.5D.6【考点】估算无理数的大小.【分析】先求出+1的范围,再根据范围求出即可.【解答】解:∵3<<4,∴4<+1<5, ∴[+1]=4,故选B.【点评】本题考查了估算无理数的大小的应用,关键是求出+1的范围. 二、填空题11.﹣的相反数是  .【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故答案为:.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数. 12.16的算术平方根是 4 .【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根. 13.写出一个比﹣3大的无理数是 如等(答案不唯一) .【考点】实数大小比较.【分析】根据这个数即要比﹣3大又是无理数,解答出即可.【解答】解:由题意可得,﹣>﹣3,并且﹣是无理数.故答案为:如等(答案不唯一)【点评】本题考查了实数大小的比较及无理数的定义,任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.  14.化简﹣= ﹣ .【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=2﹣3=﹣.【点评】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变. 15.比较大小:2 < π(填“>”、“<”或“=”).【考点】实数大小比较.【分析】首先利用计算器分别求2和π的近似值,然后利用近似值即可比较求解.【解答】解:因为2≈2.828,π≈3.414,所以<π.【点评】本题主要考查了实数的大小的比较,主要采用了求近似值来比较两个无理数的大小. 16.已知一个正数的平方根是3x﹣2和5x+6,则这个数是  .【考点】平方根.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.  17.若x,y为实数,且|x+2|+=0,则(x+y)2014的值为 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】先根据非负数的性质列出关于x、y方程组,然后解方程组求出x、y的值,再代入原式求解即可.【解答】解:由题意,得:,解得;∴(x+y)2014=(﹣2+3)2014=1;故答案为1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零. 18.已知m=,则m2﹣2m﹣2013= 0 .【考点】二次根式的化简求值.【分析】先分母有理化,再将m2﹣2m﹣2013变形为(m﹣1)2﹣2014,再代入计算即可求解.【解答】解:m==+1,则m2﹣2m﹣20130=(m﹣1)2﹣2014=(+1﹣1)2﹣2014=2014﹣2014=0.故答案为:0.【点评】此题考查了二次根式的化简求值,分母有理化,完全平方公式,二次根式的化简求值,一定要先化简再代入求值. 三、解答题(共66分) 19.(2012﹣π)0﹣()﹣1+|﹣2|+;(2)1+(﹣)﹣1﹣÷()0.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零指数幂和负整数指数幂的意义计算;(2)根据零指数幂、负整数指数幂和二次根式的意义计算.【解答】解:(1)原式=1﹣3+2﹣+=0;(2)原式=1﹣2﹣(2﹣)÷1=1﹣2﹣2+=﹣3.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可. 20.先化简,再求值:(1)(a﹣2b)(a+2b)+ab3÷(﹣ab),其中a=,b=;(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【考点】整式的混合运算—化简求值.【分析】(1)先算乘法和除法,再合并同类项,最后代入求出即可;(2)先算乘法和除法,再合并同类项,最后代入求出即可.【解答】解:(1)(a﹣2b)(a+2b)+ab3÷(﹣ab)=a2﹣4b2﹣b2=a2﹣5b2,当a=,b=时,原式=()2﹣5×()2=﹣13;(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=时,原式=﹣2. 【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键. 21.有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母): A、D、E ;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).【考点】实数的运算.【分析】(1)根据实数的乘法法则和有理数、无理数的定义即可求解;(2)根据(1)的结果可以得到规律.【解答】解:(1)A、D、E;注:每填对一个得,每填错一个扣,但本小题总分最少0分.(2)设这个数为x,则x=a(a为有理数),所以x=(a为有理数).(注:无“a为有理数”扣;写x=a视同x=)【点评】此题主要考查了实数的运算,也考查了有理数、无理数的定义,文字阅读比较多,解题时要注意审题,正确理解题意. 22.计算:(1)++﹣;(2)2÷×;(3)(﹣4+3)÷2.【考点】二次根式的混合运算.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算;(3)先把各二次根式化简为最简二次根式,然后把括号内合并后进行二次根式的除法运算. 【解答】解:(1)原式=4+5+﹣3=6+;(2原式=2×××=;(3)原式=(﹣2+6)÷2=(+4)÷2=+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可. 23.甲同学用如图方法作出C点,表示数,在△OAB中,∠OAB=90°,OA=2,AB=3,且点O,A,C在同一数轴上,OB=OC(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所给数轴上描出表示﹣的点A.【考点】实数与数轴;勾股定理.【分析】(1)依据勾股定理求得OB的长,从而得到OC的长,故此可得到点C表示的数;(2)由29=25+4,依据勾股定理即可做出表示﹣的点.【解答】解:(1)在Rt△AOB中,OB===,∵OB=OC,∴OC=.∴点C表示的数为.(2)如图所示: 取OB=5,作BC⊥OB,取BC=2.由勾股定理可知:OC===.∵OA=OC=.∴点A表示的数为﹣.【点评】本题主要考查的是实数与数轴、勾股定理的应用,掌握勾股定理是解题的关键. 24.如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,,2.【考点】勾股定理;二次根式的应用.【分析】(1)利用勾股定理得出AB,BC,AC的长,进而得出答案;(2)直接利用各边长结合勾股定理得出答案.【解答】解:(1)如图①所示:AB=4,AC==3,BC==,所以AB的长度是有理数,AC和BC的长度是无理数;(2)如图②所示: 【点评】此题主要考查了勾股定理以及二次根式的应用,正确应用勾股定理是解题关键. 25.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简= ﹣ .②参照(三)式化简= ﹣ .(2)化简:+++…+.【考点】分母有理化.【分析】(1)原式各项仿照题中分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可得到结果.【解答】解:(1)①==﹣;②===﹣;(2)原式=+++…+==. 故答案为:(1)①﹣;②﹣【点评】此题考查了分母有理化,熟练掌握分母有理化的方法是解本题的关键.  查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭