资料简介
第二十四章圆24.2点和圆、直线和圆的位置关系第1课时
1.理解并掌握点和圆的三种位置关系.(重点)2.理解不在同一直线上的三个点确定一个圆及其运用.(重点)3.了解三角形的外接圆和三角形外心的概念.4.了解反证法的证明思想.学习目标
导入新课你玩过飞镖吗?它的靶子是由一些圆组成的,你知道击中靶子上不同位置的成绩是如何计算的吗?情境引入想一想
问题1:观察下图中点和圆的位置关系有哪几种?.o.C....B..A.点与圆的位置关系有三种:点在圆内,点在圆上,点在圆外.点和圆的位置关系
问题2:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?点P在⊙O内点P在⊙O上点P在⊙O外dddrPdPrdPrd<rr=>r反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?
1.⊙O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在;点B在;点C在.练一练:圆内圆上圆外2.圆心为O的两个同心圆,半径分别为1和2,若OP=,则点P在()A.大圆内B.小圆内C.小圆外D.大圆内,小圆外oD
要点归纳rPdPrdPrdRrP点P在⊙O内dr点P在圆环内r≤d≤R数形结合:位置关系数量关系
例1:如图,已知矩形ABCD的边AB=3,AD=4.(1)以A为圆心,4为半径作⊙A,则点B、C、D与⊙A的位置关系如何?解:AD=4=r,故D点在⊙A上AB=3r,故C点在⊙A外
(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,求⊙A的半径r的取值范围?(直接写出答案)360°,∠C>60°∠A+∠B+∠C>180°三角形的内角和为180度△ABC中至少有一个内角小于或等于60°.∠A+∠B+∠C>60°+60°+60°=180°
1.如图,请找出图中圆的圆心,并写出你找圆心的方法?ABCO当堂练习
2.正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A;点C在⊙A;点D在⊙A.上外上3.⊙O的半径r为5㎝,O为原点,点P的坐标为(3,4),则点P与⊙O的位置关系为()A.在⊙O内B.在⊙O上C.在⊙O外D.在⊙O上或⊙O外B
4.判断:(1)经过三点一定可以作圆()(2)三角形的外心就是这个三角形两边垂直平分线的交点()(3)三角形的外心到三边的距离相等()(4)等腰三角形的外心一定在这个三角形内()√×××
5.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它的外接圆半径=.56.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.70°
7.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()MRQABCPA.点PB.点QC.点RD.点MB
8.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第④块C.第③块D.第②块D
·2cm3cm9.画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.O1
10.如图,已知Rt△ABC中,若AC=12cm,BC=5cm,求的外接圆半径.CBAO解:设Rt△ABC的外接圆的外心为O,连接OC,则OA=OB=OC.∴O是斜边AB的中点.∵∠C=900,AC=12cm,BC=5cm.∴AB=13cm,OA=6.5cm.故Rt△ABC的外接圆半径为6.5cm.
能力拓展:一个8×12米的长方形草地,现要安装自动喷水装置,这种装置喷水的半径为5米,你准备安装几个?怎样安装?请说明理由.
点与圆的位置关系点在圆外点在圆上点在圆内d>rd=rd
查看更多