资料简介
第十四章整式的乘法与因式分解14.1整式的乘法第6课时
1.理解掌握同底数幂的除法法则.(重点)2.探索整式除法的三个运算法则,能够运用其进行计算.(难点)学习目标
导入新课情境引入问题木星的质量约是1.9×1024吨,地球的质量约是5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.想一想:上面的式子该如何计算?地球木星
讲授新课探究发现1.计算:(1)25×23=?(2)x6·x4=?(3)2m×2n=?28x102m+n2.填空:(1)()()×23=28(2)x6·()()=x10(3)()()×2n=2m+n25x42m本题直接利用同底数幂的乘法法则计算本题逆向利用同底数幂的乘法法则计算相当于求28÷23=?相当于求x10÷x6=?相当于求2m+n÷2n=?同底数幂的除法
4.试猜想:am÷an=?(m,n都是正整数,且m>n)3.观察下面的等式,你能发现什么规律?(1)28÷23=25(2)x10÷x6=x4(3)2m+n÷2n=2m同底数幂相除,底数不变,指数相减am÷an=am-n=28-3=x10-6=2(m+n)-n验证:因为am-n·an=am-n+n=am,所以am÷an=am-n.
一般地,我们有am÷an=am-n(a≠0,m,n都是正整数,且m>n)即同底数幂相除,底数不变,指数相减.知识要点同底数幂的除法想一想:am÷am=?(a≠0)答:am÷am=1,根据同底数幂的除法法则可得am÷am=a0.规定a0=1(a≠0)这就是说,任何不等于0的数的0次幂都等于1.
典例精析例1计算:(1)x8÷x2;(2)(ab)5÷(ab)2.解:(1)x8÷x2=x8-2=x6;(2)(ab)5÷(ab)2=(ab)5-2=(ab)3=a3b3.方法总结:计算同底数幂的除法时,先判断底数是否相同或变形为相同,若底数为多项式,可将其看作一个整体,再根据法则计算.
计算:(1)(-xy)13÷(-xy)8;(2)(x-2y)3÷(2y-x)2;(3)(a2+1)6÷(a2+1)4÷(a2+1)2.针对训练(3)原式=(a2+1)6-4-2=(a2+1)0=1.解:(1)原式=(-xy)13-8=(-xy)5=-x5y5;(2)原式=(x-2y)3÷(x-2y)2=x-2y;
例2已知am=12,an=2,a=3,求am-n-1的值.方法总结:解此题的关键是逆用同底数幂的除法,对am-n-1进行变形,再代入数值进行计算.解:∵am=12,an=2,a=3,∴am-n-1=am÷an÷a=12÷2÷3=2.
探究发现(1)计算:4a2x3·3ab2=;(2)计算:12a3b2x3÷3ab2=.12a3b2x34a2x3解法2:原式=4a2x3·3ab2÷3ab2=4a2x3.理解:上面的商式4a2x3的系数4=12÷3;a的指数2=3-1,b的指数0=2-2,而b0=1,x的指数3=3-0.解法1:12a3b2x3÷3ab2相当于求()·3ab2=12a3b2x3.由(1)可知括号里应填4a2x3.单项式除以单项式
单项式相除,把系数、同底数的幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连它的指数一起作为商的一个因式.知识要点单项式除以单项式的法则底数不变,指数相减.保留在商里作为因式.被除式的系数除式的系数理解商式=系数•同底的幂•被除式里单独有的幂
典例精析例3计算:(1)28x4y2÷7x3y;(2)-5a5b3c÷15a4b.=4xy;(2)原式=(-5÷15)a5-4b3-1c解:(1)原式=(28÷7)x4-3y2-1=ab2c.
针对训练计算(1)(2a2b2c)4z÷(-2ab2c2)2;(2)(3x3y3z)4÷(3x3y2z)2÷x2y6z.解:(1)原式=16a8b8c4z÷4a2b4c4=4a6b4z;(2)原式=81x12y12z4÷9x6y4z2÷x2y6z=9x4y2z.方法总结:掌握整式的除法的运算法则是解题的关键,注意在计算过程中,有乘方的先算乘方,再算乘除.
下列计算错在哪里?怎样改正?(1)4a8÷2a2=2a4()(2)10a3÷5a2=5a()(3)(-9x5)÷(-3x)=-3x4()(4)12a3b÷4a2=3a()2a62a3x47ab××××系数相除同底数幂的除法,底数不变,指数相减只在一个被除式里含有的字母,要连同它的指数写在商里,防止遗漏.求商的系数,应注意符号练一练
问题1一幅长方形油画的长为(a+b),宽为m,求它的面积.面积为(a+b)m=ma+mb问题2若已知油画的面积为(ma+mb),宽为m,如何求它的长?(ma+mb)÷m多项式除以单项式
问题3如何计算(am+bm)÷m?计算(am+bm)÷m就是相当于求()·m=am+bm,因此不难想到括里应填a+b.又知am÷m+bm÷m=a+b.即(am+bm)÷m=am÷m+bm÷m
知识要点多项式除以单项式的法则多项式除以单项式,就是用多项式的除以这个,再把所得的商.单项式每一项相加关键:应用法则是把多项式除以单项式转化为单项式除以单项式.
典例精析例4计算(12a3-6a2+3a)÷3a.解:(12a3-6a2+3a)÷3a=12a3÷3a+(-6a2)÷3a+3a÷3a=4a2+(-2a)+1=4a2-2a+1.方法总结:多项式除以单项式,实质是利用乘法的分配律,将多项式除以单项式问题转化为单项式除以单项式问题来解决.计算过程中,要注意符号问题.
计算:(1)(6x3y4z-4x2y3z+2xy3)÷2xy3;(2)(72x3y4-36x2y3+9xy2)÷(-9xy2).针对训练(2)原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.解:(1)原式=6x3y4z÷2xy3-4x2y3z÷2xy3+2xy3÷2xy3=3x2yz-2xz+1;
例5先化简,后求值:[2x(x2y-xy2)+xy(xy-x2)]÷x2y,其中x=2015,y=2014.解:原式=[2x3y-2x2y2+x2y2-x3y]÷x2y,原式=x-y=2015-2014=1.=x-y.把x=2015,y=2014代入上式,得
当堂练习2.下列算式中,不正确的是()A.(-12a5b)÷(-3ab)=4a4B.9xmyn-1÷3xm-2yn-3=3x2y2C.4a2b3÷2ab=2ab2D.x(x-y)2÷(y-x)=x(x-y)1.下列说法正确的是()A.(π-3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103D.若(x+4)0=1,则x≠-4DD
5.已知一多项式与单项式-7x5y4的积为21x5y7-28x6y5,则这个多项式是.-3y3+4xy4.一个长方形的面积为a2+2a,若一边长为a,则另一边长为_____________.a+23.已知28a3bm÷28anb2=b2,那么m,n的取值为( )A.m=4,n=3B.m=4,n=1C.m=1,n=3D.m=2,n=3A
6.计算:(1)6a3÷2a2;(2)24a2b3÷3ab;(3)-21a2b3c÷3ab;(4)(14m3-7m2+14m)÷7m.解:(1)6a3÷2a2=(6÷2)(a3÷a2)=3a.(2)24a2b3÷3ab=(24÷3)a2-1b3-1=8ab2.(3)-21a2b3c÷3ab=(-21÷3)a2-1b3-1c=-7ab2c;(4)(14m3-7m2+14m)÷7m=14m3÷7m-7m2÷7m+14m÷7m=2m2-m+2.
7.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=1,y=-3.解:原式=x2-y2-2x2+4y2原式=-12+3×(-3)2=-1+27=26.当x=1,y=-3时,=-x2+3y2.
8.(1)若32•92x+1÷27x+1=81,求x的值;解:(1)32•34x+2÷33x+3=81,即3x+1=34,解得x=3;(3)已知2x-5y-4=0,求4x÷32y的值.(3)∵2x-5y-4=0,移项,得2x-5y=4.4x÷32y=22x÷25y=22x-5y=24=16.(2)已知5x=36,5y=2,求5x-2y的值;(2)52y=(5y)2=4,5x-2y=5x÷52y=36÷4=9.拓展提升
课堂小结整式的除法同底数幂的除法单项式除以单项式底数不变,指数相减1.系数相除;2.同底数的幂相除;3.只在被除式里的因式照搬作为商的一个因式多项式除以单项式转化为单项式除以单项式的问题
查看更多