返回

资料详情(天天资源网)

资料简介

第十五章分式15.2分式的运算第5课时 1.理解并掌握整数指数幂的运算性质.(重点)2.会用科学记数法表示绝对值小于1的数.(重点)3.理解负整数指数幂的性质并应用其解决实际问题.(难点)学习目标 导入新课问题引入算一算,并分别说出每一小题所用的运算性质.(2)=;同底数幂的乘法:(m,n是正整数)幂的乘方:(m,n是正整数)(3)=;积的乘方:(n是正整数) 算一算,并分别说出每一小题所用的运算性质.(4)=;同底数幂的除法:(a≠0,m,n是正整数且m>n)(5)=;商的乘方:(b≠0,n是正整数)(6)=;() 想一想:am中指数m可以是负整数吗?如果可以,那么负整数指数幂am表示什么?讲授新课负整数指数幂 问题:计算:a3÷a5=?(a≠0)解法1解法2再假设正整数指数幂的运算性质am÷an=amn(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5=a3-5=a-2.于是得到: (3)→}}}→→(1)(2)深入研究 知识要点负整数指数幂的意义一般地,我们规定:当n是正整数时,这就是说,a-n(a≠0)是an的倒数. 引入负整数指数幂后,指数的取值范围就推广到全体整数.也就说前面提到的运算性质也推广到整数指数幂.想一想:对于am,当m=7,0,-7时,你能分别说出它们的意义吗? (1),.(2),.牛刀小试填空: 例1A.a>b=cB.a>c>bC.c>a>bD.b>c>a典例精析B方法总结:关键是理解负整数指数幂的意义,依次计算出结果.当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数. 计算:(1)(x3y-2)2;(2)x2y-2·(x-2y)3;例2解析:先进行幂的乘方,再进行幂的乘除,最后将整数指数幂化成正整数指数幂.解:(1)原式=x6y-4(2)原式=x2y-2·x-6y3=x-4y提示:计算结果一般需化为正整数幂的形式. 计算:(3)(3x2y-2)2÷(x-2y)3;(4)(3×10-5)3÷(3×10-6)2.例2(4)原式=(27×10-15)÷(9×10-12)=3×10-3解:(3)原式=9x4y-4÷x-6y3=9x4y-4·x6y-3=9x10y-7 计算:解:做一做 解: (1)根据整数指数幂的运算性质,当m,n为整数时,am÷an=am-n又am·a-n=am-n,因此am÷an=am·a-n.即同底数幂的除法可以转化为同底数幂的乘法.(2)特别地,所以即商的乘方可以转化为积的乘方.总结归纳 整数指数幂的运算性质归结为(1)am·an=am+n(m、n是整数);(2)(am)n=amn(m、n是整数);(3)(ab)n=anbn(n是整数). 例3解析:分别根据有理数的乘方、0指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算. 科学记数法:绝对值大于10的数记成a×10n的形式,其中1≤a 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭