资料简介
第一章有理数1.2有理数第3课时
1.借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称.(难点)2.会求有理数的相反数.(重点)学习目标
导入新课情境引入1成语故事《南辕北辙》讲了一个人……如果点O表示魏国的位置,点A表示楚国的位置,假设楚国与魏国相距30km,以魏国为原点0,我们规定向南为正方向,而此人从魏国出发向北到了点B也走了30km,请同学们把这3个点在数轴上表示出来.现在的位置魏国楚国OBA-30-20-100102030
两位同学背靠背,规定向前为正,一人向前走3步,记作,一人向后走3步,记作.对照数轴,说出-3与+3两数的相同点和不同点.你还能说出具备这些特征的成对的数吗?情境引入2
活动1:观察下列一组数+1和-1,+2.5和-2.5,+4和-4,并把它们在数轴上表示出来.思考:1)上述各对数之间有什么特点?2)请写出一组具有上述特点的数3)你能得出相反数的概念吗?4)表示各对数的点在数轴上有什么位置关系?探究一相反数的概念相反数
讲授新课活动2:请观察这两个数,它们有什么异同点?你还能列举两个这样的数吗?数字相同符号不同
1.定义:只有符号不同的两个数叫做互为相反数.2.一般地,a和-a互为相反数.要点归纳代数意义
判断题:(1)-5是5的相反数;()(2)-5是相反数;()(3)与互为相反数;()(4)-5和5互为相反数;()(5)相反数等于它本身的数只有0;﹙﹚(6)符号不同的两个数互为相反数.﹙﹚×√×√√×练一练
结合数轴考虑:0的相反数是_____.一个正数的相反数是一个.一个负数的相反数是一个.负数正数一个数的相反数是它本身的数是______.00
思考:在数轴上,画出几组表示相反数的点,并观察这两个点具有怎样的特征?位于原点两侧,且与原点的距离相等.05-5-11探究二相反数的几何意义a-a
思考:数轴上到原点的距离相等的点所表示的数有什么特点?借助数轴填一填:1.数轴上与原点距离是2的点有____个,这些点表示的数是________;2.与原点的距离是5的点有____个,这些点表示的数是________.02-2两2和-25和-5两5-5
1.互为相反数的两个数分别位于原点的两侧(0除外);2.互为相反数的两个数到原点的距离相等.要点归纳几何意义3.一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点的两侧,表示a和-a,这两点关于原点对称.
1.一般地,设a是一个正数,数轴上与原点的距离是a的点有_____个,它们分别在原点的______,表示_______,我们说这两点________________.两左右-a和a关于原点对称归纳总结
问题1:a的相反数是什么?在这个数前加一个“-”号.问题2:如何求一个数的相反数?a的相反数是-a,a可表示任意有理数.多重符号的化简
-(+1.1)表示什么?-(-7)呢?-(-9.8)呢?它们的结果应是多少?问题3:若把a分别换成+5,-7,0时,这些数的相反数怎样表示?a=+5,-a=-(+5)a=-7,-a=-(-7)a=0,-a=0
(1)是____的相反数,(2)是______的相反数,=______.(3)是_______的相反数,.(4)是_______的相反数,.+4-4填一填
思考:如果在一个数前面加上“+”号所得得到的结果是什么呢?归纳总结在一个数前面加上“-”号表示求这个数的相反数.
化简下列各数(先读后写)(1)-(+10)(2)+(-0.15)(3)+(+3)(4)-(-12)(5)+[-(-1.1)](6)-[+(-7)]例2(6)-[+(-7)]=-(-7)=7.由内向外依次去括号方法总结:化简多重符号时,只需数一下数字前面有多少个负号,若有偶数个,则结果为正;若有奇数个,则结果为负.解:(1)-(+10)=-10;(2)+(-0.15)=-0.15;(3)+(+3)=3;(4)-(-12)=12;(5)+[-(-1.1)]=+(+1.1)=1.1;
技巧:(一查二定)1.式子中含偶数个“-”号时,结果正;含奇数个“-”号时,结果为负。2.凡是“+”都去掉。
1.-1.6是____的相反数,____的相反数是0.3.2.下列几对数中互为相反数的一对为().A.和B.与C.与3.5的相反数是____;a的相反数是___;1.6-a-5C-0.3当堂练习
4.若a=-13,则-a=____;若-a=-6,则a=___.5.若a是负数,则-a是_____数;若-a是负数,则a是_____数.6.的相反数是_____,-3x的相反数是___.136正3x正
7.(1)若a=3.2,则-a=;(2)若-a=2,则a=;(3)若-(-a)=3,则-a=;(4)-(a-b)=.能力拓展-2-3.2-3b-a
8.若2x+1是-9的相反数,求x的值.解:由相反数的意义,得2x+1=92x=8x=4拓展思考:已知两个有理数x、y,且x+y=0,那么这两个有理数有什么关系?
课堂小结1.相反数的概念:只有符号不同的两个数叫做互为相反数;特别地,0的相反数是0.2.表示的相反数.
查看更多