返回

资料详情(天天资源网)

资料简介

2022-2023年浙教版数学八年级上册2.4《等腰三角形的判定定理》课时练习一、选择题1.在△ABC中,AB=c,BC=a,AC=b,下列条件不能判定△ABC是等腰三角形的是()A.∠A∶∠B∶∠C=1∶1∶3B.a∶b∶c=2∶2∶3C.∠B=50°,∠C=80°D.2∠A=∠B+∠C2.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8B.9C.10D.113.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能得到两个等腰三角形纸片的是()4.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CEB.AD=AEC.DA=DED.BE=CD5.如图,△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为() A.48°B.36°C.30°D.24°6.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个7.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC面积为()A.0.4cm2B.0.5cm2C.0.6cm2D.0.7cm28.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是(   )A.70°    B.110°  C.140°    D.150°9.在一张长为8cm,宽为6cm的长方形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上),这个等腰三角形的剪法有()A.1种B.2种C.3种D.4种10.如图,已知点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F. 给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF.从这四个条件中选取两个,不能判定△ABC是等腰三角形的是(  )A.①②B.①④C.②③D.③④二、填空题11.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,确定△ABC是等腰三角形.你添加的条件是. 12.如图,在Rt△ABC中,∠BAC=90°,过顶点A的直线DE∥BC,∠ABC,∠ACB的平分线分别交DE于E,D.若AC=6,AB=8,则∠DOE=,DE的长为.13.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在观测灯塔A北偏东60°方向上,则C处与灯塔A的距离是  海里.14.△ABC中其周长为7,AB=3,当BC=时,△ABC为等腰三角形.15.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=海里. 16.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为   m2.三、解答题17.从①AB=DC;②BE=CE;③∠B=∠C;④∠BAD=∠CDA四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).18.如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由. 19.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.20.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.21.如图:AD为△ABC的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD. 22.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.23.如图,已知C是AB上一点,点D、E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.连接DE,交AB于点F,猜想△BEF的形状,并给予证明. 参考答案1.D.2.C3.B4.C5.A6.D7.B8.D9.C10.C11.答案为:BD=CD(答案不唯一).12.答案为:135°,14.13.答案为:25.14.答案为:1或215.答案为:716.答案为:8或10或12或;17.解:选择的条件是:③∠B=∠C④∠BAD=∠CDA(或①③,②③,①④);证明:在△BAD和△CDA中,∵,∴△BAD≌△CDA(AAS),∴∠BDA=∠CAD∴△AED是等腰三角形18.解:(1)如图所示:BD即为所求; (2)∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=36°+36°=72°,∴BD=BC,∴△DBC是等腰三角形.19.证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵DE∥AC,∴∠ADE=∠DAC.∴∠BAD=∠ADE,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠B=90°.∵∠BDE+∠ADE=90°,∴∠B=∠BDE,∴BE=DE,∴△BDE是等腰三角形.20.解:(1)射线BD即为所求;(2)∵∠A=90°,∠C=30°,∴∠ABC=90°﹣30°=60°,∵BD平分∠ABC, ∴∠CBD=∠ABC=30°,∴∠C=∠CBD=30°,∴DC=DB.21.证明:在CD上取一点E使DE=BD,连接AE.∵BD=DE,且∠AED为△AEC的外角,∠B=2∠C,∴∠B=∠AED=∠C+∠EAC=2∠C,∴∠EAC=∠C,∴AE=EC;则CD=DE+EC=AB+BD.22.证明:(1)∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△AED和△BFE中,∠ADE=∠BFE,AE=BE,∠AED=∠BEF∴△AED≌△BFE(AAS);(2)EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△AED≌△BFE得:DE=EF,即GE为DF上的中线,∴GE垂直平分DF. 23.解:△BEF为等腰三角形,理由如下:连CE,∵AD∥BE,∴∠A=∠B,在△ADC和△BCE中,,∴△ADC≌△CBE,∴∠DCF=∠BEC,CD=CE,∵CD=CE,∴∠CDF=∠CED,又∠BFE=∠CDF+∠DCF,∠BEF=∠BEC+∠CED,∴∠BFE=∠BEF,∴BF=BE,即△BEF为等腰三角形. 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭