资料简介
人教版数学九年级上册专项培优练习十八《概率初步解答题专练》1.将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x;再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果;(2)求取出的两张卡片上的数字之和为偶数的概率P.2.春节,小娜家购买了4个灯笼(外观完全一样),灯笼上分别写有“欢”“度”“春”“节”.(1)小娜从四个灯笼中任取一个,取到“春”的概率是多少;(2)小娜从四个灯笼中先后取出两个灯笼,请用列表法或画树状图法求小娜恰好取到“春”“节”两个灯笼的概率.
3.某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择.若随机选择其中一个,则小明回答正确的概率是.(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择.若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.4.如图所示,管中放置着三根同样的绳子AA1,BB1,CC1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A,B,C三个绳头中随机选两个打一个结,再从右端A1,B1,C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.
5.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到_______元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.6.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两个人打第一场.游戏规则是:三人同时伸“手心、手背”的中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的.请用画树状图的方法求小莹和小芳打第一场的概率.
7.课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将上面条形统计图补充完整;(3)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.8.初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘,由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)9.为响应国家的“一带一路”
经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.10.有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.11.八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”
后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:(1)扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.12.
如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)随机掷两次骰子,求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?
13.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.
14.1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.15.甲、乙、丙、丁四位同学在他们建立的四人微信群聊中玩“拼手气红包”,首先由甲同学在群聊中选择发3个红包,并将总金额定为5元,由微信将5元钱随机分到3个红包中,规定自己发的红包自己不能抢,由余下的三位同学一起争抢,抢得红包内金额最大的人为“手气最佳”,然后再由“手气最佳”的这位同学发3个红包,总金额为5元,由微信随机分配金额并由余下三位同学一起争抢(假设这两次游戏中每个红包的金额都不相同).(1)在这两次抢红包的游戏中,乙同学两次都获得“手气最佳”的概率是多少?请说明理由;(2)在其条件都不变的情况下,将发红包的个数改为4个,且四个同学都可以同时争抢,请利用列表或画树状图的方法在两次抢红包后,乙同学两次都获得“手气最佳”的概率是多少?
参考答案1.解:(1)列表如下:由列表可知,(x,y)的所有等可能结果共6种.(2)由(1)知共有6种等可能结果,其中两张牌的和为偶数的情况有2种,则P(两张牌上数字和为偶数)==.2.解:(1). (2)画树状图如下:由列表或画树状图可知,共有12种等可能情况,其中恰好取到“春”“节”两个灯笼的有2种,∴P(两次恰好取到“春”“节”)==.3.解:(1)(2)画树状图如下:由树状图可知共有4种等可能的结果,其中正确的有1种,∴小丽回答正确的概率为.4.解:(1)(2)列表如下:
所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,∴P==.5.解:(1)10,50;(2)解:树状图如下:0102030102030100203010304001030202030502030010503040第一次第二次和从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此(不低于30元)=6.解:(1)从三个人中选一个打第一场,每个人被选中的可能性都是相同的,所以恰好选中大刚的概率是;(2)画树状图如答图,所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为=.7.解:(1)(6+4)÷50%=20.所以王老师一共调查了20名学生.(2)C类学生人数:20×25%=5(名)C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),故C类女生有3名,D类男生有1名;补充条形统计图
.(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)==.8.解:9.解:(1)D厂的零件比例=1﹣20%﹣20%﹣35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,
C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)==.10.解:11.解:(1)扇形图中跳绳部分的扇形圆心角为360°×(1﹣50%﹣20%﹣10%﹣10%)=36度;该班共有学生(2+5+7+4+1+1)÷50%=40人;训练后篮球定时定点投篮平均每个人的进球数是=5,故答案为:36,40,5.(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)的结果有6种,∴P(M)==.
12.解:13.解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A组男人成绩不合格,∴合格人数为:50﹣5=45(人);(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,∴成绩的中位数落在C组;∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为:0.7.14.解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,小红小花12345
1(2,1)(3,1)(4,1)(5,1)2(1,2)(3,2)(4,2)(5,2)3(1,3)(2,3)(4,3)(5,3)4(1,4)(2,4)(3,4)(5,4)5(1,5)(2,5)(3,5)(4,5)记小红和小花抽在相邻两道这个事件为A,∴.15.解:(1)在这两次抢红包的游戏中,乙同学两次都获得“手气最佳”的概率是0.理由如下:因为乙同学两第一次获得“手气最佳”后由他发红包,而他不能抢,所以乙同学不可能两次都获得“手气最佳”,所以乙同学两次都获得“手气最佳”的概率为0;(2)画树状图为:共有16种等可能的结果数,其中乙同学两次都获得“手气最佳”的结果数为1,所以乙同学两次都获得“手气最佳”的概率=.
查看更多