返回

资料详情(天天资源网)

资料简介

人教版数学九年级上册专项培优练习三《二次函数最值问题》一、选择题已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是(   )A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m如图所示为一个长8m、宽6m的矩形小花园,根据需要将它的长缩短x(m),宽增加x(m),要使修改后的小花园面积达到最大,则x应为().A.1mB.1.5mC.2mD.2.5m对于二次函数y=﹣x2+x﹣4,下列说法正确的是(  )A.当x>0时,y随x的增大而增大B.图象的顶点坐标为(﹣2,﹣7)C.当x=2时,y有最大值﹣3D.图象与x轴有两个交点一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A.5元B.10元C.0元D.6元已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是(  )A.有最大值﹣1,有最小值﹣2.B.有最大值0,有最小值﹣1 C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2烟花厂为热烈庆祝“十一国庆”,特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+30t+1,礼炮点火升空后会在最高点处引爆,则这种礼炮能上升的最大高度为()A.91米B.90米C.81米D.80米如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(万元)与销售量x(辆)之间分别满足:y1=-x2+10x,y2=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为().A.30万元B.40万元C.45万元D.46万元若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2-ax()A.有最大值B.有最大值-C.有最小值D.有最小值- 小明、小亮、小梅、小花四人共同探究代数式x2﹣4x+5的值的情况,他们作了如下分工:小明负责找值为1时的x值,小亮负责找值为0时的x值,小梅负责找最小值,小花负责找最大值.几分钟后,各自通报探究的结论,其中错误的是(   )A.小明认为只有当x=2时,x2﹣4x+5的值为1;B.小亮认为找不到实数x,使x2﹣4x+5的值为0;C.小花发现当取大于2的实数时,x2﹣4x+5的值随x的增大而增大,因此认为没有最大值D.小梅发现x2﹣4x+5的值随x的变化而变化,因此认为没有最小值;已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为()A.3﹣或1+B.3﹣或3+C.3+或1﹣D.1﹣或1+当﹣2≤x≤1时,关于x的二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为(  )A.2    B.2或﹣  C.2或﹣或﹣  D.2或±或﹣二、填空题二次函数y=﹣(x﹣6)2+8的最大值是 .二次函数y=﹣2x2﹣4x+5的最大值是    .二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m最大值为. 某农场拟建三间矩形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图所示).已知计划中的建筑材料可建墙的总长度为48m,则这三间矩形种牛饲养室的总占地面积的最大值为m2.已知实数x,y满足x2+3x+y﹣3=0,则y﹣x的最大值为.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围为;(2)△ABC的最大面积为.三、解答题下表给出了代数式﹣x2+bx+c与x的一些对应值:x…﹣2﹣10123…﹣x2+bx+c…5nc2﹣3﹣10…(1)根据表格中的数据,确定b,c,n的值;(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值. 商场某种商品平均每天可销售40件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加  件,每件商品盈利  元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利最大,最大利润是多少元?某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图所示.(1)图中点P所表示的实际意义是;销售单价每提高1元时,销售量相应减少件;(2)请直接写出y与x之间的函数表达式:;自变量x的取值范围为;(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少? 用12米长的木料,做成如图的矩形窗框,则当长和宽各多少米时,矩形窗框的面积最大?最大面积是多少?如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3).D是抛物线y=-x2+6x上一点,且在x轴上方.求△BCD面积的最大值.已知关于x的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根.(1)求m的值.(2)先作y=x2﹣(m+1)x+12(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位,再向上平移2个单位,写出变化后图象的表达式.(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值. 如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0),B(1,0),C(0,3).(1)求抛物线的解析式;(2)点P为抛物线上一个动点,记△PAC的面积为S.①当点P与抛物线顶点D重合时,求△PAC的面积S;②若点P位于第二象限,试求△PAC面积S的最大值及此时点P的坐标;(3)在y轴上是否存在点M,使得△ADM是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由. 参考答案1.D.2.A.3.C.4.A.5.D.6.A7.B8.D9.B.10.D11.A12.B13.答案为:8.14.答案为:7.15.答案为:3.16.答案为:144.17.答案为:4;18.答案为:(1)1<x<2;(2).19.解:(1)根据表格数据可得,解得,∴﹣x2+bx+c=﹣x2﹣2x+5,当x=﹣1时,﹣x2﹣2x+5=6,即n=6;(2)根据表中数据得当0≤x≤2时,y的最大值是5.20.解:(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50﹣x)元,故答案为:2x,50﹣x;(2)设商场日盈利为y,则y=(50﹣x)(40+2x)=﹣2x2+60x+2000=﹣2(x﹣15)2+2450, ∴当x=15时,y最大=2450,答:每件商品降价15元时,商场日盈利最大,最大利润是2450元.21.解:(1)图中点P所表示的实际意义是:当售价定为35元/件时,销售量为300件;第一个月的该商品的售价为20×(1+50%)=30(元),销售单价每提高1元时,销售量相应减少数量为(400-300)÷(35-30)=20(件).(2)设y与x之间的函数表达式为y=kx+b,将点(30,400),(35,300)代入,得30k+b=400,35k+b=300解得k=-20,b=1000.∴y与x之间的函数表达式为y=-20x+1000.当y=0时,x=50,∴自变量x的取值范围为30≤x≤50.(3)设第二个月的利润为W元,由已知得:W=(x-20)y=(x-20)(-20x+1000)=-20x2+1400x-20000=-20(x-35)2+4500,∵-20<0,∴当x=35时,W取最大值4500.答:第二个月的销售单价定为35元时,可获得最大利润,最大利润是4500元.22.解:设窗框长为x米,则宽(4-x)米,矩形窗框的面积为y=x(4-x)=-x2+4x=-(x-2)2+4.∵a=-1 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭