资料简介
2022-2023年人教版数学九年级上册21.3《实际问题与一元二次方程》课时练习一、选择题某市广场准备修建一个面积为200平方米的矩形草坪,它的长比宽多10米,设草坪的宽为x米,则可列方程为( )A.x(x-10)=200B.2x-2(x-10)=200C.2x+2(x+10)=200D.x(x+10)=200答案为:D我国南宋数学家杨辉曾提出这样一个问题:"直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步."如果设矩形田地的长为x步,那么同学们列出的下列方程中正确的是( )A.x(x+12)=864 B.x(x-12)=864 C.x2+12x=864 D.x2+12x-864=0答案为:B在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队.如果某一小组共有x个队,该小组共赛了90场,那么列出正确的方程是( )A.x(x-1)=90B.x(x﹣1)=90C.2x(x-1)=90D.x(x+1)=90答案为:B.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行或列,则列方程得( )A.(8-x)(10-x)=8×10-40B.(8-x)(10-x)=8×10+40C.(8+x)(10+x)=8×10-40D.(8+x)(10+x)=8×10+40答案为:D.某幼儿园准备修建一个面积为210m2的矩形活动场地,它的长比宽多12m,设场地的长为xm,可列方程为()A.x(x+12)=210B.x(x-12)=210C.2x+2(x+12)=210D.2x+2(x-12)=210答案为:B.有一人患了流感,经过两轮传染后共有100人患了流感,每轮传染中平均一个人传染的人数x满足的方程为( )A.1+x+x(1+x)=100B.x(1+x)=100C.1+x+x2=100 D.x2=100答案为:A.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长,设原正方形空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18B.x2-3x+16=0C.(x-1)(x-2)=18D.x2+3x+16=0
答案为:C.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=570答案为:A我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x步,那么同学们列出的下列方程中正确的是( )A.x(x+12)=864B.x(x-12)=864C.x2+12x=864D.x2+12x-864=0答案为:B.毕业典礼后,九年级(1)班有若干人,若没人给全班的其他成员赠送一张毕业纪念卡,则全班送贺卡共1190张,九年级(1)班人数为()A.34B.35C.36D.37答案为:B如图,在宽为20米,长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米答案为:A将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,为了赚得8000元的利润,商品售价应为()A.60元B.80元C.60元或80元D.30元答案为:C二、填空题2020年某市人均GDP约为2022年的1.21倍,如果该市每年的人均GDP增长率相同,那么该增长率为 .答案为:10%;某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是 .答案为:289(1﹣x)2=256.某工程生产一种产品,第一季度共生产了364个,其中1月份生产了100个,若2、3月份的平均月增长率为x,则可列方程为.答案为:100+100(1+x)+100(1+x)2=364.小明用30cm的铁丝围成一斜边长等于13cm的直角三角形,设该直角三角形的一直角边长为xcm,则另一直角边长为cm,列方程得.答案为:(17-x),x2+(17-x)2=132.
《算学宝鉴》全称《新集通证古今算学宝鉴》,王文素著,完成于明嘉靖三年,全书12本42卷,近50万字,代表了我国明代数学的最高水平.《算学宝鉴》中记载的用导数解高次方程的方法堪与牛顿媲美,且早于牛顿140年.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为.答案为:x(x﹣12)=864.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出 .答案为:3.三、解答题某口罩生产厂生产的口罩1月份平均日产量为20000,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?解:(1)设口罩日产量的月平均增长率为x,依据题意可得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=−2.1(不合题意舍去),∴x=10%,答:口罩日产量的月平均增长率为10%;(2)依据题意可得:24200(1+10%)=24200×1.1=26620(个),答:按照这个增长率,预计4月份平均日产量为26620个.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.如图,利用一面足够长的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏),设矩形ABCD的宽AD为x米,矩形的长为AB(且AB>AD).(1)若所用铁栅栏的长为40米,用含x的代数式表示矩形的长AB;(2)在(1)的条件下,若使矩形场地面积为192平方米,则AD、AB的长应分别为多少米?
解:(1)∵AD+BC﹣2+AB﹣2=40,AD=BC=x,∴AB=﹣2x+44;由题意得(﹣2x+44)•x=192,即2x2﹣44x+192=0,解得x1=6,x2=16,∵x2=16>(舍去),∴AD=6,∴AB=﹣2×6+44=32.答:AD长为6米,AB长为32米.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有121台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过1300台?解:设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=121,整理得(1+x)2=121,则x+1=11或x+1=﹣11,解得x1=10,x2=﹣12(舍去),则(1+x)2+x(1+x)2=(1+x)3=(1+10)3=1331>1000.答:每轮感染中平均每一台电脑会感染10台电脑,3轮感染后,被感染的电脑会超过1300台.如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计﹣横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?解:设小路的宽应是x米,则剩下草总长为(32﹣2x)米,总宽为(15﹣x)米,由题意得(32﹣2x)(15﹣x)=32×15×(1﹣)即x2﹣31x+30=0,解得x1=30,x2=1∵路宽不超过15米∴x=30不合题意舍去答:小路的宽应是1米.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),将(40,600),(45,550)代入y=kx+b,得解得
∴年销售量y与销售单价x的函数关系式为y=-10x+1000.(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x-30)万元,销售数量为(-10x+1000)台,根据题意得:(x-30)(-10x+1000)=10000,整理得x2-130x+4000=0,解得x1=50,x2=80.∵此设备的销售单价不得高于70万元,∴x=50.答:该设备的销售单价应是50万元/台.
查看更多