返回

资料详情(天天资源网)

资料简介

人教2019A版选择性必修一第三章圆锥曲线的方程 学习目标1.掌握抛物线的简单几何性质.2.归纳、对比四种方程所表示的抛物线的几何性质的异同.3.掌握直线与抛物线位置关系的判断。 问题导学 探究1.范围抛物线y2=2px(p>0)在y轴的右侧,开口向右,这条抛物线上的任意一点M的坐标(x,y)的横坐标满足不等式x≥0;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线. 概念形成2.对称性观察图象,不难发现,抛物线y2=2px(p>0)关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3.顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点(0,0).4.离心率抛物线上的点M到焦点的距离和它到准线的距离的比,叫做抛物线的离心率.用e表示,e=1. 探究 抛物线四种形式的标准方程及其性质抛物线的几何性质 标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)焦点坐标准线方程顶点坐标O(0,0)离心率e=1 1.对以上四种位置不同的抛物线和它们的标准方程进行对比、分析,其共同点:(1)顶点都为原点;(2)对称轴为坐标轴;(3)准线与对称轴垂直,垂足与焦点分别关于原点对称,它们与原点的距离都等于一次项系数的绝对值的;(4)焦点到准线的距离均为p.其不同点:(1)对称轴为x轴时,方程的右端为±2px,左端为y2;对称轴为y轴时,方程的右端为±2py,左端为x2;(2)开口方向与x轴(或y轴)的正半轴相同,焦点在x轴(或y轴)的正半轴上,方程的右端取正号;开口方向与x轴(或y轴)的负半轴相同,焦点在x轴(或y轴)的负半轴上,方程的右端取负号.2.只有焦点在坐标轴上,顶点是原点的抛物线的方程才是标准方程.归纳总结 1.判断(1)抛物线关于顶点对称.()(2)抛物线只有一个焦点,一条对称轴,无对称中心.()(3)抛物线的标准方程虽然各不相同,但是其离心率都相同.()小试牛刀答案:(1)×(2)√(3)√2.思考:怎样根据抛物线的标准方程判断抛物线的对称轴和开口方向?解析:一次项的变量若为x(或y),则x轴(或y轴)是抛物线的对称轴,一次项系数的符号决定开口方向.如果y是一次项,负时向下,正时向上.如果x是一次项,负时向左,正时向右. 3.以x轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为()A.y2=8xB.y2=-8xC.y2=8x或y2=-8xD.x2=8y或x2=-8y解析:设抛物线方程为y2=2px(p>0)或y2=-2px(p>0),依题意得x=,代入y2=2px或y2=-2px得|y|=p,∴2|y|=2p=8,p=4.∴抛物线方程为y2=8x或y2=-8x.答案:C 问题思考(1)掌握抛物线的性质,重点应抓住“两点”“两线”“一率”“一方向”,它们分别指的是什么?(2)抛物线的性质与椭圆和双曲线性质的主要区别有哪些?提示:“两点”是指抛物线的焦点和顶点;“两线”是指抛物线的准线和对称轴;“一率”是指离心率1;“一方向”是指抛物线的开口方向.提示:抛物线的离心率等于1,它只有一个焦点、一个顶点、一条对称轴和一条准线.它没有中心,通常称抛物线为无心圆锥曲线,而称椭圆和双曲线为有心圆锥曲线.问题思考 典例解析 跟踪训练1.设抛物线y=mx2(m≠0)的准线与直线y=1的距离为3,求抛物线的标准方程.跟踪训练故所求抛物线的标准方程为y=8x2.错因分析本题在解答过程中容易出现两个错误:一是不能正确理解抛物线标准方程的形式,错误地将所给方程看成是抛物线的标准方程,得到准线方程为y=-;二是得到准线方程后,只分析其中的一种情况,而忽略了另一种情况,只得到了一个解. 例4.斜率为1的直线经过抛物线y2=4x的焦点,与抛物线相交于两点A、B,求焦点弦长AB的长.典例解析 直线和抛物线的位置关系有三种:相交、相切、相离将直线方程和抛物线方程联立,消元转化为关于x(或y的)方程组:Ax2+Bx+C=0(或Ay2+By+C=0),其中A,B,C为常数.若A=0,则直线和抛物线相交(直线与抛物线的对称轴平行),有一个交点;若A≠0,计算判别式Δ=B2-4AC:若Δ>0,则直线和抛物线相交(有两个交点);若Δ=0,则直线和抛物线相切(有一个交点);若Δ<0,则直线和抛物线相离(无交点).归纳总结 跟踪训练 当堂达标 4.已知抛物线y2=8x.(1)求出该抛物线的顶点、焦点、准线方程、对称轴、变量x的范围;(2)以坐标原点O为顶点,作抛物线的内接等腰三角形OAB,|OA|=|OB|,若焦点F是△OAB的重心,求△OAB的周长. 解:(1)抛物线y2=8x的顶点、焦点、准线方程、对称轴、变量x的范围分别为(0,0),(2,0),x=-2,x轴,x≥0.(2)如图所示,由|OA|=|OB|可知AB⊥x轴,垂足为点M,又焦点F是△OAB的重心, 31 课堂小结 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭