资料简介
人教2019A版选择性必修一第三章圆锥曲线的方程
学习目标1.理解椭圆的定义及椭圆的标准方程.(重点)2.掌握用定义法和待定系数法求椭圆的标准方程.(重点)3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.(难点)
情境与问题椭圆是圆锥曲线的一种具有丰富的几何性质,在科研生产和人类生活中具有广泛的应用,那么椭圆到底有怎样的几何性质,我们该如何利用这些特征建立椭圆的方程,从而为研究椭圆的几何性质奠定基础。
探究取一条定长的细线,把它的两端都固定在图板的同一点套上铅笔拉紧绳子,移动笔尖,这时笔尖(动点)画出的轨迹是一个圆。如果把细绳的两端拉开一段距离,分别固定在图板中的两点F1,F2,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?在这一过程中,移动的笔尖(动点)满足的几何条件是什么?
常数(大于|F1F2|)两个定点两焦点间的距离一半概念解析
问题思考观察椭圆的形状,你认为怎样建立坐标系可能使所得的椭圆方程形式简单?
椭圆的标准方程
问题思考
椭圆的标准方程
问题思考
2.椭圆的标准方程焦点在x轴上焦点在y轴上标准方程图形焦点坐标F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)a,b,c的关系b2=a2-c2椭圆的标准方程
小试牛刀
解析:(1)易得为D选项.(2)设椭圆的左、右焦点分别为F1,F2,若|PF1|=2,结合椭圆定义|PF2|+|PF1|=10,可得|PF2|=8.答案:(1)D(2)D(3)C
典例解析
归纳总结
跟踪训练
典例解析
归纳总结
跟踪训练
当堂达标
5.如图所示,在圆C:(x+1)2+y2=25内有一点A(1,0).Q为圆C上任意一点,线段AQ的垂直平分线与C,Q的连线交于点M,当点Q在圆C上运动时,求点M的轨迹方程.
解:如图所示,连接MA.由题意知点M在线段CQ上,从而有|CQ|=|MQ|+|CM|.又点M在AQ的垂直平分线上,则|MA|=|MQ|,故|MA|+|MC|=|CQ|=5>|AC|=2.又A(1,0),C(-1,0),故点M的轨迹是以(1,0),(-1,0)为焦点的椭圆,且2a=5,c=1,
课堂小结
查看更多