资料简介
两条直线的平行与垂直!本资料为WORD文档,请点击下载地址下载全文下载地址2.1.2两条直线的平行与垂直一、教学目标 (一)知识教学:理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.(二)能力训练:通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力,以及数形结合能力.(三)学科渗透:通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.二、重难点重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.难点:启发学生,把研究两条直线的平行或垂直问题,转化为研究两条直线的斜率的关系问题.注意:对于两条直线中有一条直线斜率不存在的情况,在课堂上老师应提醒学生注意解决好这个问题.三、教学方法:启发、引导、讨论.
四、教学过程 (一)先研究特殊情况下的两条直线平行与垂直上一节课,我们已经学习了直线的倾斜角和斜率的概念,而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度,并推导出了斜率的坐标计算公式.现在,我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.讨论:两条直线中有一条直线没有斜率,(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时,两直线的平行与垂直设直线L1和L2的斜率分别为k1和k2.我们知道,两条直线的平行或垂直是由两条直线的方向决定的,而两条直线的方向又是由直线的倾斜角或斜率决定的.所以我们下面要研究的问题是:两条互相平行或垂直的直线,它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机,让学生通过度量,感知α1,α2的关系)∴tgα1=tgα2.即 k1=k2.
反过来,如果两条直线的斜率相等:即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°, 0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.结论:两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L2;反之则不一定.下面我们研究两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.,可以推出 :α1=90°+α2.L1⊥L2.
结论:两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意:结论成立的条件.即如果k1•k2=-1,那么一定有L1⊥L2;反之则不一定.(借助计算机,让学生通过度量,感知k1,k2的关系,并使L1(或L2)转动起来,但仍保持L1⊥L2,观察k1,k2的关系,得到猜想,再加以验证.转动时,可使α1为锐角,钝角等).(三)、例题:例1 已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),试判断直线BA与PQ的位置关系,并证明你的结论.分析:借助计算机作图,通过观察猜想:BA∥PQ,再通过计算加以验证.(图略)解:直线BA的斜率k1=(3-0)/(2-(-4))=0.5,直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5,因为k1=k2=0.5,所以直线BA∥PQ.例2已知四边形ABCD的四个顶点分别为A(0,0),B(2,-1),C(4,2),D(2,3),试判断四边形ABCD的形状,并给出证明.(借助计算机作图,通过观察猜想:四边形ABCD是平行四边形,再通过计算加以验证)解同上.
例3已知A(-6,0),B(3,6),P(0,3),Q(-2,6),试判断直线AB与PQ的位置关系.解:直线AB的斜率k1=(6-0)/(3-(-6))=2/3,直线PQ的斜率k2=(6-3)(-2-0)=-3/2,因为k1•k2=-1所以AB⊥PQ.例4 已知A(5,-1),B(1,1),C(2,3),试判断三角形ABC的形状.分析:借助
查看更多