资料简介
2023中考数学一轮复习测试卷10.2《数据的分析》一、选择题已知一组数据3、4、4、5、6、7、4、7,那么这组数据的( )A.中位数是5.5,众数是4B.中位数是5,平均数是5C.中位数是5,众数是4D.中位数是4.5,平均数是5答案为:D中国奥运冠军朱启南在亚运会男子10米气步枪决赛中,凭借最后3枪的出色发挥,以总成绩702.2环夺得冠军。他在决赛中打出的10枪成绩(单位:环)是:10.4,9.6,10.4,10.1,10.2,10.7,10.2,10.5,10.7,10.4.则这组数据的中位数是( )A.10.7 B.10.4 C.10.3 D.10.2答案为:B喜迎建党100周年,某校将举办小合唱比赛,七个参赛小组人数如下:5,5,6,7,x,7,8.已知这组数平均数是6,则这组数据的中位数( )A.5B.5.5C.6D.7答案为:C.某校开展了以“爱我家乡”为主题的艺术活动,从九年级5个班收集到的艺术作品数量(单位:件)分别为48,50,47,44,50,则这组数据的中位数是( )A.44B.47C.48D.50答案为:C.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据,若这五个数据的中位数是6,唯一的众数是7,则他们投中次数的总和可能是( )A.20 B.28 C.30 D.31答案为:B已知一组数据3、4、4、5、6、7、4、7,那么这组数据的()A.中位数是5.5,众数是4B.中位数是5,平均数是5C.中位数是5,众数是4D.中位数是4.5,平均数是5答案为:D八年级(1)班50名学生的年龄统计结果如右表所示:则此班学生年龄的众数、中位数分别为( )年龄13141516人数422231A.23,22 B.15,14 C.14,15 D.22,23答案为:B为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:141144145146
一分钟跳绳个数(个)学生人数(名)5212则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.4答案为:B一组数据,1,2,1,4的方差为()A.1B.1.5C.2D.2.5答案为:B一次数学测试,某小组五名同学的成绩如下表(有两个数据被遮盖):那么被遮盖的两个数据依次是()A.80,2B.80,10C.78,2D.78,10答案为:C二、填空题某班共有学生50人,平均身高为168cm,其中30名男生平均身高为170cm,则20名女生的平均身高为________.答案为:165cm为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为 小时.答案为:1.15.“爱心小组”的九位同学为灾区捐款,捐款金额分别为10,10,11,15,17,17,18,20,20(单位:元).那么这组数据的中位数是 答案为:17某次数学测验满分为100(单位:分),某班的平均成绩为75,方差为10.若把每位同学的成绩按满分120进行换算,则换算后的平均成绩与方差分别是__________.答案为:90,14.4.三、解答题某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)应聘者阅读能力思维能力表达能力甲859080乙958095(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?解:(1)∵=(85+90+80)÷3=85(分),=(95+80+95)÷3=90(分),
∴<,∴乙将被录用;(2)根据题意得:==87(分),==86(分);∴>,∴甲将被录用.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是 .(直接写出结果)(2)这次调查获取的样本数据的众数是 ,中位数是 .(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.解:(1)样本容量是:6+12+10+8+4=40,故答案为:40;(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50,故答案为:30,50;(3)×1000=50500(元),答:该校本学期计划购买课外书的总花费是50500元.甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.根据以上信息,整理分析数据如下:队员平均/环中位数/环众数/环甲7b7乙a7.5c(1)写出表格中的a、b、c的值;(2)已知乙队员射击成绩的方差为4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.解:(1)a=(3+6+4+8+7+8+7+8+10+9)=7,b=7,c=8;(2)S甲2=×[(5﹣7)2×1+(6﹣7)2×2+(7﹣7)2×4+(8﹣7)2×2+(9﹣7)2×
1]=1.2,则S甲2<S乙2,∴甲队员的射击成绩较稳定.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.①②根据统计图,回答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数甲组=7,方差S=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?解:(1)11÷55%=20(人),×100%=65%,所以第三次成绩的优秀率是65%.条形统计图补充如答图所示,(2)乙组==7,S=[(6-7)2+(8-7)2+(5-7)2+(9-7)2]=2.5,∵S<S,∴甲组成绩优秀的人数较稳定.
查看更多