返回

资料详情(天天资源网)

资料简介

人教2019A版必修第二册第八章 立体几何初步 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(2)直线与平面平行的判定定理:(1)定义法;线线平行线面平行1.到现在为止,我们一共学习过几种判断直线与平面平行的方法呢?复习回顾 (1)平行(2)相交α∥β2.平面与平面有几种位置关系?分别是什么? 思考:反之,若α中所有直线都平行β,则α∥β启示?两个平面平行的问题,可以转化为一个平面内的直线与另一个平面平行的问题。若平面α∥β,则α中所有直线都平行β二、新知探究??;!线面平行面面平行转化无限有限转化 探究:如图8.5-11(1),a和b分别是矩形硬纸片的两条对边所在直线,它们都和桌面平行,那么都和桌面平行,那么硬纸片和桌面平行吗?如图8.5-11(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺和桌面平行吗?硬纸片与桌面可能相交,如图,三角尺与桌面平行,如图, 平面与平面平行的判定定理:符号表示:如果一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.P①内②交③平行线面平行面面平行 练习:判断下列命题是否正确,并说明理由.(1)若平面内的两条直线分别与平面平行,则与平行;(2)若平面内有无数条直线分别与平面平行,则与平行;××(3)、一个平面内两条不平行的直线都平行于平面,则与平行。(4)、如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行。√√(5)如果一个平面内的一条直线平行于另一个平面,那么这两个平面平行× 例1:已知正方体ABCD-A1B1C1D1,求证:平面AB1D1//平面C1BD证明:因为ABCD-A1B1C1D1为正方体,所以D1C1∥A1B1,D1C1=A1B1又AB∥A1B1,AB=A1B1,∴D1C1∥AB,D1C1=AB,∴D1C1BA是平行四边形,∴D1A∥C1B,又D1A平面C1BD,CB平面C1BD.由直线与平面平行的判定,可知同理D1B1∥平面C1BD,又D1A∩D1B1=D1,所以,平面AB1D1∥平面C1BD。D1A∥平面C1BD, 1.在正方体中,相互平行的面不会是()A.前后相对侧面B.上下相对底面C.左右相对侧面D.相邻的侧面解析由正方体的模型知前后面、上下面、左右面都相互平行,故选D.答案D达标检测 2.下列命题中正确的是()A.一个平面内三条直线都平行于另一平面,那么这两个平面平行B.如果一个平面内所有直线都平行于另一个平面,那么这两个平面平行C.平行于同一直线的两个平面一定相互平行D.如果一个平面内有几条直线都平行于另一平面,那么这两个平面平行解析如果一个平面内所有直线都平行于另一个平面,即两个平面没有公共点,则两平面平行,故选B.答案B 3.如图,已知在三棱锥P-ABC中,D,E,F分别是棱PA,PB,PC的中点,则平面DEF与平面ABC的位置关系是________.解析在△PAB中,因为D,E分别是PA,PB的中点,所以DE∥AB.又DE平面ABC,AB⊂平面ABC,因此DE∥平面ABC.同理可证EF∥平面ABC.又DE∩EF=E,DE,EF⊂平面DEF,所以平面DEF∥平面ABC.答案平行 4.如图,在正方体ABCD-A1B1C1D1中,P为DD1中点.能否同时过D1,B两点作平面α,使平面α∥平面PAC?证明你的结论.解能作出满足条件的平面α,其作法如下:如图,连接BD1,取AA1中点M,连D1M,则BD1与D1M所确定的平面即为满足条件的平面α.证明如下:连接BD交AC于O,连接PO,则O为BD的中点,又P为DD1的中点,则PO∥D1B.∵BD1平面PAC,OP⊂平面PAC,故D1B∥平面PAC. 又因为M为AA1的中点,故D1M∥PA,又D1M平面PAC,PA⊂平面PAC,从而D1M∥平面PAC.又因为D1M∩D1B=D1,D1M⊂α,D1B⊂α,所以平面α∥平面PAC. 第一步:在一个平面内找出两条相交直线;第二步:证明两条相交直线分别平行于另一个平面。第三步:利用判定定理得出结论。面面平行线线平行线面平行3、证明的书写三个条件“内”、“交”、“平行”,缺一不可。1、证明的两个平面平行的基本思路:2、证明的两个平面平行的一般步骤:小结 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭