返回

资料详情(天天资源网)

资料简介

第八章立体几何初步8.1 基本立体图形第1课时 棱柱、棱锥、棱台的结构特征课后篇巩固提升基础巩固1.(多选题)关于简单几何体的结构特征,下列说法正确的是(  )                A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等答案ACD解析根据棱锥的结构特征知,棱锥的侧棱相交于一点但长度不一定相等.2.下面多面体中,是棱柱的有(  )A.1个B.2个C.3个D.4个答案D解析根据棱柱的定义进行判定,知这4个图都满足.3.如图,在三棱台A'B'C'-ABC中,截去三棱锥A'-ABC,则剩余部分是(  )A.三棱锥B.四棱锥C.三棱柱D.三棱台答案B解析剩余部分是四棱锥A'-BCC'B'.4.棱锥的侧面和底面可以都是(  )A.三角形B.四边形C.五边形D.六边形 答案A解析三棱锥的侧面和底面均是三角形.5.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是(  )答案C解析动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.6.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是(  )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定答案A解析如图.∵平面AA1D1D∥平面BB1C1C,∴有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线),因此呈棱柱形状.7.一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为    cm. 答案12解析n棱柱有2n个顶点,因为此棱柱有10个顶点,所以此棱柱为五棱柱.又棱柱的侧棱都相等,五条侧棱长的和为60cm,可知每条侧棱长为12cm.8.在下面四个平面图形中,各侧棱都相等的四面体的展开图是     (把你认为正确的序号都填上).  答案①②解析折叠后,易知①②均可围成三棱锥,即四面体,且各侧棱都相等,而③④折叠后只能围成无底的四棱锥.9.一个几何体的表面展开平面图如图.(1)该几何体是哪种几何体;(2)该几何体中与“祝”字面相对的是哪个面?与“你”字面相对的是哪个面?解(1)该几何体是四棱台;(2)与“祝”相对的面是“前”,与“你”相对的面是“程”.10.按下列条件分割三棱台ABC-A1B1C1(不需要画图,各写出一种分割方法即可).(1)一个三棱柱和一个多面体;(2)三个三棱锥.解(1)在AC上取点D,使DC=A1C1,在BC上取点E,使EC=B1C1,连接A1D,B1E,DE,则得三棱柱A1B1C1-DEC与一个多面体A1B1BEDA.(答案不唯一)(2)连接AB1,AC1,BC1,则可分割成三棱锥A-A1B1C1,三棱锥A-BCC1,三棱锥A-BB1C1.(答案不唯一)能力提升1. 如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A、B、C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?解(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.2.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从点A出发沿长方体表面爬行到点C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.解把长方体的部分面展开,如图,有三种情况. 对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内由F到C1,其最短路程为. 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭