资料简介
第5单元三角函数(巩固篇)基础知识讲解一.运用诱导公式化简求值【基础知识】利用诱导公式化简求值的思路1.“负化正”,运用公式三将任意负角的三角函数化为任意正角的三角函数.2.“大化小”,利用公式一将大于360°的角的三角函数化为0°到360°的三角函数,利用公式二将大于180°的角的三角函数化为0°到180°的三角函数.3.“小化锐”,利用公式六将大于90°的角化为0°到90°的角的三角函数.4.“锐求值”,得到0°到90°的三角函数后,若是特殊角直接求得,若是非特殊角可由计算器求得.二.正弦函数、余弦函数、正切函数的图象和性质函数y=sinxy=cosxy=tanx图象定义域RRk∈Z值域[﹣1,1][﹣1,1]R
单调性递增区间:(2kπ﹣,2kπ+)(k∈Z);递减区间:(2kπ+,2kπ+)(k∈Z)递增区间:(2kπ﹣π,2kπ)(k∈Z);递减区间:(2kπ,2kπ+π)(k∈Z)递增区间:(kπ﹣,kπ+)(k∈Z)最 值x=2kπ+(k∈Z)时,ymax=1;x=2kπ﹣(k∈Z)时,ymin=﹣1x=2kπ(k∈Z)时,ymax=1;x=2kπ+π(k∈Z)时,ymin=﹣1无最值奇偶性奇函数偶函数奇函数对称性对称中心:(kπ,0)(k∈Z)对称轴:x=kπ+,k∈Z对称中心:(kπ+,0)(k∈Z)对称轴:x=kπ,k∈Z对称中心:(,0)(k∈Z)无对称轴周期2π2ππ三.同角三角函数间的基本关系【基础知识】1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.
(2)商数关系:=tanα.2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cos_α,其中k∈Z.公式二:sin(π+α)=﹣sin_α,cos(π+α)=﹣cos_α,tan(π+α)=tanα.公式三:sin(﹣α)=﹣sin_α,cos(﹣α)=cos_α.公式四:sin(π﹣α)=sinα,cos(π﹣α)=﹣cos_α.公式五:sin(﹣α)=cosα,cos(﹣α)=sinα.公式六:sin(+α)=cosα,cos(+α)=﹣sinα3.两角和与差的正弦、余弦、正切公式(1)cos(α﹣β)=cosαcosβ+sinαsinβ;(2)cos(α+β)=cosαcosβ﹣sinαsinβ;(3)sin(α+β)=sinαcosβ+cosαsinβ;(4)sin(α﹣β)=sinαcosβ﹣cosαsinβ;(5)tan(α+β)=.(6)tan(α﹣β)=.4.二倍角的正弦、余弦、正切公式(1)sin2α=2sin_αcos_α;(2)cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α;(3)tan2α=.
【技巧方法】诱导公式记忆口诀:对于角“±α”(k∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k为奇数时,正弦变余弦,余弦变正弦;当k为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.四.两角和与差的三角函数【基础知识】(1)cos(α﹣β)=cosαcosβ+sinαsinβ;(2)cos(α+β)=cosαcosβ﹣sinαsinβ;(3)sin(α+β)=sinαcosβ+cosαsinβ;(4)sin(α﹣β)=sinαcosβ﹣cosαsinβ;(5)tan(α+β)=.(6)tan(α﹣β)=.五.二倍角的三角函数【基础知识】二倍角的正弦其实属于正弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:sin2α=2sinα•cosα;其可拓展为1+sin2α=(sinα+cosα)2.二倍角的余弦其实属于余弦函数和差化积里面的一个特例,即α=β的一种特例,其公式为:cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α.二倍角的正切其实属于正切函数和差化积里面的一个特例,即α=β的一种特例,其公式为:tan2α=.对于这个公式要求是能够正确的运用其求值化简即可.
六.半角的三角函数【基础知识】半角的三角函数关系主要是指正切函数与正余弦函数之间的关系(正余弦的半角关系其实就是二倍角关系),其公式为:①tan===;②tan===.七.三角函数的积化和差公式【基础知识】三角函数的积化和差公式:(1)sinαsinβ=[cos(α﹣β)﹣cos(α+β)]cosαcosβ=[cos(α﹣β)+cos(α+β)](2)sinαcosβ=[sin(α+β)+sin(α﹣β)]cosαsinβ=[sin(α+β)﹣sin(α﹣β)](3)tanαtanβ=tanαcotβ=.八.三角函数的和差化积公式【基础知识】三角函数的和差化积公式:
(1)sinα+sinβ=2sincossinα﹣sinβ=2cossin(2)cosα+cosβ=2coscoscosα﹣cosβ=﹣2sinsin(3)cosα+sinα=sin(+α)=cos()cosα﹣sinα=cos(+α)=sin(﹣α)习题演练一.选择题(共12小题)1.sin600°+tan240°的值等于()A.-B.C.-+D.+2.函数y=sin2x的图象可能是A.B.
C.D.3.定义运算,若,则等于()A.B.C.D.4.下列函数中,既是奇函数又在区间上是增函数的是()A.B.C.D.5.函数ƒ(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1B.π,2C.2π,1D.2π,26.设,则的大小关系为()A.B.C.D.7.若,,,,则()A.B.C.D.8.已知函数,要得到函数的图象,只需将
的图象()A.向左平移个单位长度B.向右平移个单位长度8C.向左平移个单位长度D.向右平移个单位长度9.函数,的最小正周期为()A.B.C.D.410.关于函数,,,且在上单调,有下列命题:(1)的图象向右平移个单位后关于轴对称(2)(3)的图象关于点对称(4)在上单调递增其中正确的命题有()个A.1B.2C.3D.411.函数,的图象大致是()
A.B.C.D.12.已知函数的部分图象如图所示,其中图象最高点和最低点的横坐标分别为和,图象在y轴上的截距为,给出下列四个结论:①的最小正周期为;②的最大值为2;③;④为奇函数.其中正确结论的个数是()A.1B.2C.3D.4一.填空题(共6小题)13.________.14.将函数y=的图象向右平移个单位长度,则平移后的图象中与y轴最近的对称轴的方程是____.
15.已知,则______.16.已知,,且,则的值等于__________.17.函数的图象向右平移个单位后与函数的图象重合,则下列结论正确的是______.①的一个周期为;②的图象关于对称;③是的一个零点;④在单调递减;18.已知函数,点是直线与函数的图象自左至右的某三个相邻交点,若,则_____三.解析题(共6小题)19.若函数的一个零点和与之相邻的对称轴之间的距离为,且当时,取得最小值.(1)求的解析式;(2)若,求的值域.20.设.(1)若,求函数的零点;
(2)当时,恒成立,求实数的取值范围.21.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.22.已知函数.(Ⅰ)化简;(Ⅱ)若,求的值.23.已知函数的部分图象如图所示.(1)求的解析式.(2)写出的递增区间.24.已知函数,.(1)求函数的最小正周期和单调递增区间;
(2)求函数在区间上的最小值和最大值,并求出取得最值时的值.
查看更多