返回

资料详情(天天资源网)

资料简介

2.1.2空间中直线与直线之间的位置关系一、选择题1.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是(  )A.平行或异面B.相交或异面C.异面D.相交解析:选B 假设a与b是异面直线,而c∥a,则c显然与b不平行(否则c∥b,则有a∥b,矛盾).因此c与b可能相交或异面.2.如图所示,在三棱锥S—MNP中,E、F、G、H分别是棱SN、SP、MN、MP的中点,则EF与HG的位置关系是(  )A.平行B.相交C.异面D.平行或异面解析:选A ∵E、F分别是SN和SP的中点,∴EF∥PN.同理可证HG∥PN,∴EF∥HG.3.如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为(  )A.相交B.平行C.异面而且垂直D.异面但不垂直解析:选D 将展开图还原为正方体,如图所示.AB与CD所成的角为60°,故选D.4.下列命题中①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行. 正确的结论有(  )A.1个B.2个C.3个D.4个解析:选B 对于①,这两个角也可能互补,故①错;对于②,正确;对于③,不正确,举反例:如右图所示,BC⊥PB,AC⊥PA,∠ACB的两条边分别垂直于∠APB的两条边,但这两个角既不一定相等,也不一定互补;对于④,由公理4可知正确.故②④正确,所以正确的结论有2个.5.若P是两条异面直线l,m外的任意一点,则(  )A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅有一条直线与l,m都垂直C.过点P有且仅有一条直线与l,m都相交D.过点P有且仅有一条直线与l,m都异面解析:选B 逐个分析,过点P与l,m都平行的直线不存在;过点P与l,m都垂直的直线只有一条;过点P与l,m都相交的直线1条或0条;过点P与l,m都异面的直线有无数条.二、填空题6.空间中有一个角∠A的两边和另一个角∠B的两边分别平行,∠A=70°,则∠B=________.解析:∵∠A的两边和∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°.又∠A=70°,∴∠B=70°或110°.答案:70°或110°7.已知正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与A1B1所成的角的余弦值为________.解析:设棱长为1,因为A1B1∥C1D,所以∠AED1就是异面直线AE与A1B1所成的角.在△AED1中,AE==,cos∠AED1===.答案:8.如图,点P、Q、R、S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS是异面直线的一个图是________. 解析:①中PQ∥RS,②中RS∥PQ,④中RS和PQ相交.答案:③三、解答题9.如图所示,E、F分别是长方体A1B1C1D1—ABCD的棱A1A,C1C的中点.求证:四边形B1EDF是平行四边形.证明:设Q是DD1的中点,连接EQ、QC1.∵E是AA1的中点,∴EQ綊A1D1.又在矩形A1B1C1D1中,A1D1綊B1C1,∴EQ綊B1C1(平行公理).∴四边形EQC1B1为平行四边形.∴B1E綊C1Q.又∵Q、F是DD1、C1C两边的中点,∴QD綊C1F.∴四边形QDFC1为平行四边形.∴C1Q綊DF.又∵B1E綊C1Q,∴B1E綊DF.∴四边形B1EDF为平行四边形.10.已知三棱锥A-BCD中,AB=CD,且直线AB与CD成60°角,点M,N分别是BC,AD的中点,求直线AB和MN所成的角.解:如图,取AC的中点P,连接PM,PN,因为点M,N分别是BC,AD的中点, 所以PM∥AB,且PM=AB;PN∥CD,且PN=CD,所以∠MPN(或其补角)为AB与CD所成的角.所以∠PMN(或其补角)为AB与MN所成的角.因为直线AB与CD成60°角,所以∠MPN=60°或∠MPN=120°.又因为AB=CD,所以PM=PN①,(1)若∠MPN=60°,则△PMN是等边三角形,所以∠PMN=60°,即AB与MN所成的角为60°.(2)若∠MPN=120°,则易知△PMN是等腰三角形.所以∠PMN=30°,即AB与MN所成的角为30°.综上可知:AB与MN所成角为60°或30°. 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭