资料简介
【新教材】3.2.1单调性与最大(小)值(人教A版)1、理解增函数、减函数的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.重点:1、函数单调性的定义及单调性判断和证明;2、利用函数单调性或图像求最值.难点:根据定义证明函数单调性.一、预习导入阅读课本76-80页,填写。1.增函数、减函数的定义
2、单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)________,区间D叫做y=f(x)的________.[点睛] 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“,”连接.如函数y=在(-∞,0),(0,+∞)上单调递减,却不能表述为:函数y=在(-∞,0)∪(0,+∞)上单调递减.3、函数的最大(小)值1.判断(正确的打“√”,错误的打“×”)(1)所有的函数在其定义域上都具有单调性.( )(2)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.( )(3)任何函数都有最大值或最小值.( )(4)函数的最小值一定比最大值小.( )2.函数y=f(x)的图象如图所示,其增区间是( )A.[-4,4]B.[-4,-3],[1,4]
C.[-3,1]D.[-3,4]3.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A.-1,0 B.0,2C.-1,2D.,24.下列函数f(x)中,满足对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)的是( )A.f(x)=x2 B.f(x)=C.f(x)=|x|D.f(x)=2x+15.函数f(x)=,x∈[2,4],则f(x)的最大值为______;最小值为________.题型一利用图象确定函数的单调区间例1求下列函数的单调区间,并指出其在单调区间上是增函数还是减函数:(1)y=3x-2;(2)y=-.跟踪训练一1.已知x∈R,函数f(x)=x|x-2|,试画出y=f(x)的图象,并结合图象写出函数的单调区间.题型二利用函数的图象求函数的最值例2 已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并写出值域.跟踪训练二1.已知函数f(x)=
(1)画出f(x)的图象;(2)利用图象写出该函数的最大值和最小值.题型三证明函数的单调性例3求证:函数f(x)=x+在区间(0,1)内为减函数.跟踪训练三1.求证:函数f(x)=在(0,+∞)上是减函数,在(-∞,0)上是增函数.题型四利用函数的单调性求最值例4已知函数f(x)=x+.(1)判断f(x)在区间[1,2]上的单调性;(2)根据f(x)的单调性求出f(x)在区间[1,2]上的最值.跟踪训练四1.已知函数f(x)=(x∈[2,6],)求函数的最大值和最小值.题型五函数单调性的应用例5已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)与f的大小.跟踪训练五1.已知g(x)是定义在[-2,2]上的增函数,且g(t)>g(1-3t),求t的取值范围.题型六单调性最值的实际应用例6“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h(单位:m)与时间t(单位:s)之间的关系为h(t)=-4.9+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)?跟踪训练六1.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金为3600元时,能租出多少辆?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?1.f(x)对任意两个不相等的实数a,b,总有,则必有()A.函数f(x)先增后减B.函数f(x)先减后增C.函数f(x)是R上的增函数D.函数f(x)是R上的减函数2.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)的最小值为-2,则f(x)的最大值为()A.-1B.0C.1D.23.已知函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是()A.[160,+∞)B.(-∞,40]C.(-∞,40]∪[160,+∞)D.(-∞,20]∪[80,+∞)4.若函数y=f(x)的定义域为R,且为增函数,f(1-a)0,x1x2-1f(x2).故函数f(x)=x+在区间(0,1)内为减函数.跟踪训练三【答案】见解析【解析】 对于任意的x1,x2∈(-∞,0),且x1
查看更多