资料简介
课时同步练习(四十八) 二倍角的正弦、余弦、正切公式(建议用时:60分钟)[合格基础练]一、选择题1.的值是( )A. B.-C.D.-A [原式====.]2.若sin=,cos=-,则角α是( )A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角C [∵sinα=2sincos=2××<0,cosα=cos2-sin2=2-2<0,∴α是第三象限的角.]3.已知sinα-cosα=,则sin2α=( )A.-B.-C.D.A [∵sinα-cosα=,6
∴1-2sinαcosα=,即1-sin2α=,∴sin2α=-.]4.若=,则tan2α=( )A.- B.C.- D.B [因为=,整理得tanα=-3,所以tan2α===.]5.已知等腰三角形底角的正弦值为,则顶角的正弦值是( )A.B.C.-D.-A [设底角为θ,则θ∈,顶角为180°-2θ.∵sinθ=,∴cosθ==,∴sin(180°-2θ)=sin2θ=2sinθcosθ=2××=.]二、填空题6.已知sin2α=,则cos2=________. [cos2====.]7.已知tanα=-,则=________.6
- [===tanα-=-.]8.已知α是第二象限的角,tan(π+2α)=-,则tanα=________.- [∵tan(π+2α)=tan2α==-,∴tanα=-或tanα=2.∵α在第二象限,∴tanα=-.]三、解答题9.求证:=tan.[证明] ===tan.10.已知cosx=,且x∈,求cos+sin2x的值.[解] ∵cosx=,x∈,∴sinx=-=-,∴sin2x=2sinxcosx=-,∴cos+sin2x6
=+=-sin2x=-×=.[等级过关练]1.已知sin=,则cos的值等于( )A.B.C.-D.-C [因为cos=sin=sin=,所以cos=2cos2-1=2×2-1=-.]2.已知α,β均为锐角,且3sinα=2sinβ,3cosα+2cosβ=3,则α+2β的值为( )A.B.C.D.πD [由题意得①2+②2得cosβ=,cosα=,由α,β均为锐角知,sinβ=,sinα=,∴tanβ=2,tanα=,∴tan2β=-,∴tan(α+2β)=0.又α+2β∈,∴α+2β=π.故选D.]6
3.化简:tan70°cos10°(tan20°-1)=________.-1 [原式=·cos10°·=·cos10°·=·cos10°·=-·=-1.]4.已知sin22α+sin2αcosα-cos2α=1,则锐角α=________. [由原式,得sin22α+sin2αcosα-2cos2α=0,∴(2sinαcosα)2+2sinαcos2α-2cos2α=0,∴2cos2α(2sin2α+sinα-1)=0,∴2cos2α(2sinα-1)(sinα+1)=0.∵α为锐角,∴cos2α≠0,sinα+1≠0,∴2sinα-1=0,∴sinα=,∴α=.]5.已知sinα+cosα=,且α∈(0,π).(1)求tan2α的值;(2)求2sin2-sin.[解] (1)由sinα+cosα=,得sinαcosα=-,因为α∈(0,π),所以α∈,6
所以sinα-cosα==,解得sinα=,cosα=-,故tanα=-,所以tan2α==.(2)2sin2-sin=1-cos-sin=1-cosα+sinα-sinα-cosα=1-cosα=.6
查看更多