资料简介
【新教材】3.2.2奇偶性(人教A版)《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、情景导入前面我们用符号语言准确地描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质.下面继续研究函数的其他性质.画出并观察函数的图像,你能发现这两个函数图像
有什么共同特征码?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.一、预习课本,引入新课阅读课本82-84页,思考并完成以下问题1.偶函数、奇函数的概念是什么?2.奇偶函数各自的特点是?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。二、新知探究1.奇函数、偶函数(1)偶函数(evenfunction)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数(oddfunction)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.2、奇偶函数的特点(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.因此定义域关于原点对称是函数存在奇偶性的一个必要条件。(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.(4)偶函数:,
奇函数:;(5)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。(6)已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0。四、典例分析、举一反三题型一判断函数奇偶性例1(课本P84例6):判断下列函数的奇偶性(1)(2)(3)(4)【答案】(1)f(x)为偶函数(2)f(x)为偶函数(3)f(x)为奇函数(4)f(x)为偶函数【解析】(1)的定义域为R,关于原点对称。且所以为偶函数.(2)的定义域为R,关于原点对称。且所以为偶函数.(3)的定义域为,关于原点对称.且所以为奇函数.(4)的定义域为,关于原点对称.且所以为偶函数.解题技巧:(利用定义判断函数奇偶性的格式步骤:)1.定义法(1).首先确定函数的定义域,并判断其定义域是否关于原点对称;(2).确定f(-x)与f(x)的关系;(3).作出相应结论:
若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.2.图像法跟踪训练一1.判断下列函数的奇偶性:(1)f(x)=2-|x|;(2)f(x)=+;(3)f(x)=;(4)f(x)=【答案】(1)f(x)为偶函数(2)f(x)既是奇函数又是偶函数(3)f(x)是非奇非偶函数(4)f(x)为偶函数【解析】 (1)∵函数f(x)的定义域为R,关于原点对称,又f(-x)=2-|-x|=2-|x|=f(x),∴f(x)为偶函数.(2)∵函数f(x)的定义域为{-1,1},关于原点对称,且f(x)=0,又∵f(-x)=-f(x),f(-x)=f(x),∴f(x)既是奇函数又是偶函数.(3)∵函数f(x)的定义域为{x|x≠1},不关于原点对称,∴f(x)是非奇非偶函数.(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.当x>0时,-x<0,f(-x)=1-(-x)=1+x=f(x);当x<0时,-x>0,f(-x)=1+(-x)=1-x=f(x).综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.题型二利用函数的奇偶性求解析式例2 已知f(x)为R上的奇函数,当x>0时,f(x)=-2+3x+1,(1)求f(-1);(2)求f(x)的解析式.
【答案】(1)-2(2)f(x)=【解析】(1)因为函数f(x)为奇函数,所以f(-1)=-f(1)=-(-2×12+3×1+1)=-2.(2)当x0,则f(-x)=-2+3(-x)+1=-2-3x+1.由于f(x)是奇函数,则f(x)=-f(-x),所以f(x)=2+3x-1.当x=0时,f(-0)=-f(0),则f(0)=-f(0),即f(0)=0.所以f(x)的解析式为f(x)=解题技巧:(求函数解析式的注意事项))1.已知当x∈(a,b)时,f(x)=φ(x),求当x∈(-b,-a)时f(x)的解析式.若f(x)为奇函数,则当x∈(-b,-a)时,f(x)=-f(-x)=-φ(-x);若f(x)为偶函数,则当x∈(-b,-a)时,f(x)=f(-x)=φ(-x).2.若函数f(x)的定义域内含0且为奇函数,则必有f(0)=0,不能漏掉.跟踪训练二1.若f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-2x+3,求f(x)的解析式.【答案】f(x)=【解析】当x<0时,-x>0,f(-x)=(-x)2-2(-x)+3=x2+2x+3,由于f(x)是奇函数,故f(x)=-f(-x),所以f(x)=-x2-2x-3.即当x<0时,f(x)=-x2-2x-3.故f(x)=题型三利用函数的奇偶性求参例3(1)若函数f(x)=a+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;
(2)已知函数f(x)=a+2x是奇函数,则实数a=________. 【答案】(1) 0 (2)0【解析】(1)因为偶函数的定义域关于原点对称,所以a-1=-2a,解得a=.又函数f(x)=x2+bx+b+1为二次函数,结合偶函数图象的特点,易得b=0.(2)由奇函数定义有f(-x)+f(x)=0,得a(-x)2+2(-x)+ax2+2x=2ax2=0,故a=0.解题技巧:(利用奇偶性求参数)1.定义域含参数:奇偶函数的定义域为[a,b],则根据定义域关于原点对称,即a+b=0求参;2.奇偶函数求参可利用特殊值法,若是奇函数则利用f(0)=0,或f(1)+f(-1)=0等,若是偶函数则利用f(1)-f(-1)=0等求参.跟踪训练三1.设函数为奇函数,则a=________【答案】-1【解析】 ∵f(x)为奇函数,∴f(-x)=-f(x),即=-.显然x≠0,整理得x2-(a+1)x+a=x2+(a+1)x+a,故a+1=0,得a=-1.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计3.2.2奇偶性1.奇偶性概念例1例2例32.奇偶函数的特点
七、作业课本85页习题3.2本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.
查看更多