返回

资料详情(天天资源网)

资料简介

人教2019A版必修第一册第四章指数函数与对数函数 1.了解指数函数、对数函数、线性函数(一次函数)的增长差异.2.理解对数增长、直线上升、指数爆炸。3.了解函数的建模过程。学习目标 温故知新 我们看到,一次函数与指数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反映.因此,如果把握了不同函数增长方式的差异,那么就可以根据现实问题的增长情况,选择合适的函数模型刻画其变化规律.下面就来研究一次函数、指数函数和对数函数增长方式的差异.提出问题 虽然它们都是增函数,但增长方式存在很大差异,这种差异正是不同类型现实问题具有不同增长规律的反映.我们仍然采用由特殊到一般,由具体到抽象的研究方法.下面就来研究一次函数f(x)=kx+b,k>0,指数函数g(x)=ax(a>1),对数函数在定义域内增长方式的差异.问题探究 以函数y=2x与y=2x为例研究指数函数、一次函数增长方式的差异.分析:(1)在区间(-∞,0)上,指数函数y=2x值恒大于0,一次函数y=2x值恒小于0,所以我们重点研究在区间(0,+∞)上它们的增长差异.(2)借助信息技术,在同一直角坐标系内列表、描点作图如下:xy=2xy=2x0100.51.41411221.52.82832442.55.6575386·········y=2xy=2x问题探究 (3)观察两个函数图象及其增长方式:结论1:函数y=2x与y=2x有两个交点(1,2)和(2,4)结论2:在区间(0,1)上,函数y=2x的图象位于y=2x之上结论3:在区间(1,2)上,函数y=2x的图象位于y=2x之下结论4:在区间(2,3)上,函数y=2x的图象位于y=2x之上综上:虽然函数y=2x与y=2x都是增函数,但是它们的增长速度不同,函数y=2x的增长速度不变,但是y=2x的增长速度改变,先慢后快.问题探究 请大家想象一下,取更大的x值,在更大的范围内两个函数图象的关系?思考:随着自变量取值越来越大,函数y=2x的图象几乎与x轴垂直,函数值快速增长,函数y=2x的增长速度保持不变,和y=2x的增长相比几乎微不足道.问题探究 总结一:函数y=2x与y=2x在[0,+∞)上增长快慢的不同如下:虽然函数y=2x与y=2x在[0,+∞)上都是单调递增,但它们的增长速度不同.随着x的增大,y=2x的增长速度越来越快,会超过并远远大于y=2x的增长速度.尽管在x的一定范围内,2xx0时,恒有2x>2x.归纳总结 总结二:一般地指数函数y=ax(a>1)与一次函数y=kx(k>0)的增长都与上述类似.即使k值远远大于a值,指数函数y=ax(a>1)虽然有一段区间会小于y=kx(k>0),但总会存在一个x0,当x>x0时,y=ax(a>1)的增长速度会大大超过y=kx(k>0)的增长速度.归纳总结 跟踪训练 分析:(1)在区间(-∞,0)上,对数函数y=lgx没意义,一次函数值恒小于0,所以研究在区间(0,+∞)上它们的增长差异.(2)借助信息技术,在同一直角坐标系内列表、描点作图如下:xy=lgx0不存在01011201.3012301.4773401.6024501.6995601.7786·········以函数y=lgx与为例研究对数函数、一次函数增长方式的差异.y=lgx问题探究 (3)观察两个函数图象及其增长方式:总结一:虽然函数y=lgx与在(0,+∞)上都是单调递增,但它们的增长速度存在明显差异.在(0,+∞)上增长速度不变,y=lgx在(0,+∞)上的增长速度在变化.随着x的增大,的图象离x轴越来越远,而函数y=lgx的图象越来越平缓,就像与x轴平行一样.y=lgx问题探究 例如:lg10=1,lg100=2,lg1000=3,lg10000=4;这表明,当x>10,即y>1,y=lgx比相比增长得就很慢了.y=lgx问题探究 思考:将y=lgx放大1000倍,将函数y=1000lgx与比较,仍有上面规律吗?先想象一下,仍然有. 总结二:一般地,虽然对数函数与一次函数y=kx(k>0)在(0,+∞)上都是单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k>0)保持固定的增长速度,而对数函数的增长速度越来越慢.不论a值比k值大多少,在一定范围内,可能会大于kx,但由于的增长会慢于kx的增长,因此总存在一个x0,当x>x0时,恒有.归纳总结 跟踪训练 当堂达标 当堂达标 当堂达标 当堂达标 1.由特殊到一般,由具体到抽象研究了一次函数f(x)=kx+b,k>0,指数函数g(x)=ax(a>1),对数函数在定义域上的不同增长方式.课堂小结2.根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的函数是对数函数. 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭