资料简介
6.9 直线的相交第1课时 对顶角知识点1 对顶角的意义1.下列图形中,∠1与∠2是对顶角的是( )图6-9-12.如图6-9-2所示,BE,CF相交于点O,OA,OD是射线,其中构成对顶角的角是____________.图6-9-2 知识点2 对顶角的性质3.如图6-9-3,直线a,b相交于点O,∠1+∠3=________,∠2+∠3=________(邻补角的定义),所以∠1________∠2(同角的补角相等).由此可知对顶角________.
图6-9-34.已知∠α和∠β是对顶角,∠α=30°,则∠β的度数为( )A.30°B.60°C.70°D.150°5.如图6-9-4,图中是对顶角量角器,用它测量角的原理是______________.图6-9-46.如图6-9-5,直线AB,CD,EF交于一点O. 图6-9-5(1)∠EOB的对顶角是________;(2)________是∠AOE的对顶角;(3)若∠AOC=76°,则∠BOD的度数为________.7.如图6-9-6所示,直线AB与CD相交于点O,若∠AOC+∠BOD=90°,则∠BOC=________°.图6-9-68.如图6-9-7所示,∠1=120°,∠2+∠3=180°,则∠4=________°.
图6-9-79.如图6-9-8,直线AB,CD相交于点O,∠1=40°,求∠2,∠3,∠4的度数.图6-9-810.如图6-9-9所示,直线AB,CD相交于点O,OE平分∠AOC,∠EOC=35°,求∠BOD的度数.图6-9-9
11.如图6-9-10,直线AB,CD,EF相交于点O,∠AOD=150°,∠EOD=80°,求∠AOF的度数.图6-9-1012.如图6-9-11,直线AB,CD相交于点O,OE平分∠AOC,OF平分∠DOB,则点E,O,F在同一直线上,请说明理由.(补全解答过程)
图6-9-11解:∵直线AB,CD相交于点O,∴∠AOC=________(对顶角相等).∵OE平分∠AOC,OF平分∠DOB,∴∠AOE=______∠AOC,∠BOF=______∠DOB,∴∠AOE=________.∵∠AOF+∠BOF=∠AOB=180°,∴∠AOF+∠AOE=∠EOF=180°,∴点E,O,F在同一直线上.13.如图6-9-12,直线AB与CD相交于点O,∠BOE=∠COF=90°,且∠BOF=32°,求∠AOC与∠EOD的度数.图6-9-1214.已知:如图6-9-13所示,直线AB,CD,EF相交于点O,∠1∶∠3=3∶1,∠2
=30°,求∠BOE的度数.图6-9-1315.观察图6-9-14,回答下列各题.(1)图①中,共有________对对顶角,可以看作________=________×________;(2)图②中,共有________对对顶角,可以看作________=________×________;(3)图③中,共有________对对顶角,可以看作________=________×________;(4)通过(1)~(3)各题中直线条数与对顶角对数之间的关系,若有n(n≥2)条直线相交于一点,则可形成几对对顶角?图6-9-14
1.C 2.∠EOF和∠BOC,∠COE和∠BOF3.180° 180° = 相等4.A 5.对顶角相等6.(1)∠AOF (2)∠BOF (3)76°7.135 8.609.解:∵∠1=40°,∠1=∠2,∴∠2=40°.∵∠1=40°,∠1+∠3=180°,∴∠3=140°.又∵∠3=∠4,∴∠4=140°.10.解:∵OE平分∠AOC,∠EOC=35°,∴∠AOC=2∠EOC=35°×2=70°.由对顶角相等可知:∠BOD=∠AOC=70°.11.解:∵∠AOD=150°,∠AOD+∠BOD=180°,∴∠BOD=30°.又∵∠EOD=80°,∴∠EOB=80°-30°=50°,∴∠AOF=∠EOB=50°.12.∠DOB ∠BOF13.解:∵∠COF=90°,∠BOF=32°,∴∠COB=90°-32°=58°=∠AOD.∵∠BOE=90°,∴∠EOA=180°-90°=90°,∠EOC=90°-∠COB=32°,∴∠AOC=∠EOA+∠EOC=122°,
∠EOD=∠EOA+∠AOD=148°.14.解:∵∠1+∠2+∠3=180°,且∠1∶∠3=3∶1,∠2=30°,∴∠1=112.5°,∠3=37.5°,∴∠BOE=∠1=112.5°.15.解:(1)共有2对对顶角,可以看作2=2×1.(2)单个角是对顶角的有3对,两个角组成复合角的对顶角有3对,共有6对,可以看作6=3×2.(3)单个角是对顶角的有4对,两个角组成复合角的对顶角有4对,三个角组成复合角的对顶角有4对,共有12对,可以看作12=4×3.(4)n(n≥2)条直线相交于一点,可形成n(n-1)对对顶角.
查看更多