资料简介
1.2.3空间几何体的直观图一.学习目标:会用斜二侧法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的直观图.了解空间图形的不同表示形式.二.重点、难点: 重点: 难点:三.知识要点:“直观图”最常用的画法是斜二测画法,由其规则能画出水平放置的直观图,其实质就是在坐标系中确定点的位置的画法.基本步骤如下:(1)建系:在已知图形中取互相垂直的x轴和y轴,得到直角坐标系,直观图中画成斜坐标系,两轴夹角为.(2)平行不变:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x’或y’轴的线段.(3)长度规则:已知图形中平行于x轴的线段,在直观图中保持长度不变;平行于y轴的线段,长度为原来的一半.四.自主探究:(一)例题精讲:【例1】下列图形表示水平放置图形的直观图,画出它们原来的图形.解:依据斜二测画法规则,逆向进行,如图所示.【例2】(1)画水平放置的一个直角三角形的直观图;(2)画棱长为4cm的正方体的直观图.解:(1)画法:如图,按如下步骤完成.第一步,在已知的直角三角形ABC中取直角边CB所在的直线为x轴,与BC垂直的直线为y轴,画出对应的轴和轴,使.第二步,在轴上取,过作轴的平行线,取.第三步,连接,即得到该直角三角形的直观图.(2)画法:如图,按如下步骤完成.第一步,作水平放置的正方形的直观图ABCD,使.第二步,过A作轴,使.分别过点作轴的平行线,在轴及这组平行线上分别截取.第三步,连接,所得图形就是正方体的直观图.点评:直观图的斜二测画法的关键之处在于将图中的关键点转化为坐标系中的水平方向与垂直方向的坐标长度,然后运用“水平长不变,垂直长减半”的方法确定出点,最后连线即得直观图.注意被遮挡的部分画成虚线.【例3】如右图所示,梯形是一平面图形的直观图.若,,,.请画出原来的平面几何图形的形状,并求原图形的面积.
解:如图,建立直角坐标系xOy,在x轴上截取;.在过点D的y轴的平行线上截取.在过点A的x轴的平行线上截取.连接BC,即得到了原图形.由作法可知,原四边形ABCD是直角梯形,上、下底长度分别为,直角腰长度为,所以面积为.点评:给出直观图来研究原图形,逆向运用斜二测画法规则,更要求我们具有逆向思维的能力.画法关键之处同样是关键点的确定,逆向的规则为“水平长不变,垂直长增倍”,注意平行于y’轴的为垂直.第4练§1.2.3空间几何体的直观图五.目标检测:(一)基础达标1.下列说法正确的是().A.相等的线段在直观图中仍然相等B.若两条线段平行,则在直观图中对应的两条线段仍然平行C.两个全等三角形的直观图一定也全等D.两个图形的直观图是全等的三角形,则这两个图形一定是全等三角形450322.对于一个底边在x轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的().A.2倍B.倍C.倍D.倍3.如图所示的直观图,其平面图形的面积为().A.3B.6C.D.4.已知正方形的直观图是有一条边长为4的平行四边形,则此正方形的面积是().A.16B.16或64C.64D.以上都不对5.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20m、5m、10m,四棱锥的高为8m,若按1∶500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为().A.4cm,1cm,2cm,1.6cmB.4cm,0.5cm,2cm,0.8cmC.4cm,0.5cm,2cm,1.6cmD.4cm,0.5cm,1cm,0.8cm6.一个平面的斜二测图形是边长为2的正方形,则原图形的高是.7.利用斜二测画法得到的图形,有下列说法:①三角形的直观图仍是三角形;②正方形的直观图仍是正方形;③平行四边形的直观图仍是平行四边形;④菱形的直观图仍是菱形.其中说法正确的序号依次是.(二)能力提高8.(1)画棱长为2cm的正方体的直观图;(2)画水平放置的直径为3cm的圆的直观图.
9.如图,正方形O’A’B’C’的边长为1cm,它是水平放置的一个平面图形的直观图.请画出原来的平面几何图形的形状,并求原图形的周长与面积.(三)探究创新10.某几何体的三视图如下.(1)画出该几何体的直观图;(2)判别该几何体是否为棱台.
查看更多