返回

资料详情(天天资源网)

天天资源网 / 高中数学 / 教学同步 / 北师大版 / 必修1 / 第四章 函数应用 / 数学:3.2 .2函数模型及其应用实例 课件18(新人教版A必修1)

还剩 5 页未读,点击继续阅读

继续阅读

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载
有任何问题请联系天天官方客服QQ:403074932

资料简介

函数模型的应用实例 一、新课引入到目前为止,我们已经学习了哪些常用函数?一次函数二次函数指数函数对数函数幂函数(a≠0)正比例函数反比例函数(a≠0) 大家首先来看一个例子邮局规定,邮寄包裹,在5千克内每千克5元,超过5千克的超出部分按每千克3元收费,邮费与邮寄包裹重量的函数关系式为____.f(x)=从中可以知道,函数与现实世界有着紧密的联系,有着广泛应用的,那么我们能否通过更多的实例来感受它们的应用呢?若能的话,那么如何在实际问题中建立函数模型呢? 例3一辆汽车在某段路程中的行驶速率与时间的关系如图3.2-7所示。(1)求图3.2-7中阴影部分的面积,并说明所求面积的实际含义;解:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360阴影部分的面积表示汽车在这5小时内行驶的路程为360km图3.2-7 (2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数skm与时间th的函数解析式,并作出相应的图象。这个函数的图象如图3.2-8所示S=解:根据图3.2-7,有50t+200480(t-1)+205490(t-2)+213475(t-3)+222465(t-4)+22990≤t<11≤t<22≤t<33≤t<44≤t<5t图3.2-8s图3.2-7 从这个练习我们看到,在解决实际问题的过程中,图象函数是能够发挥很大的作用,因此,我们应当注意提高读图的能力。另外,在本题中我们用到了分段函数,由此我们也知道,分段函数也是刻画现实问题的重要模型。大家在运用分段函数的时候要注意它的定义域。那么应该如何解函数的应用问题呢? 例4人口问题是当年世界各国普通关注的问题。认识人口数量的变化规律,可以为有效控制人口增长提供依据。早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:表3-8是1950~1959年我国的人口数据资料:年份1950195119521953195419551956195719581959人数/万人55196563005748258796602666145662828645636599467207其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率。 (1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;解:(1)设1951~1959年的人口增长率分别为r1,r2,…,r9.由55196(1+r1)=56300可得1951年的人口增长率r1≈0.0200。同理可得,r2≈0.0210r3≈0.0229r4≈0.0250r5≈0.0197r6≈0.0223r7≈0.0276r8≈0.0222r9≈0.0184 于是,1951~1959年期间,我国人口的年均增长率为r=(r1+r2+···+r9)÷9≈0.0221令y0=55196,则我国在1950~1959年期间的人口增长模型为根据表3-8中的数据作出散点图,并作出函数的图象(图3.2-9)。由图3.2-9可以看出,所得模型与1951~1959年的实际人口数据基本吻合。图3.2-9ty (2)如果按表3-8的增长趋势,大约在哪一年我国的人口达到13亿?解:将y=130000代入由计算器可得t≈38.76所以,如果按表3-8的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿。由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力。 从以上的例子可以看到,用已知的函数模型刻画实际问题的时候,由于实际问题的条件与得出已知模型的条件有所不同,因此通过模型得出的结果往往会与实际问题存在一定的误差。因此,往往需要对模型进行修正。 中国移动通讯公司拥有“全球通”“神州行”“动感地带”三大著名客户品牌.“全球通”:收费标准是月租费50元,通话1分钟话费0.4元;“神州行”:不缴月租费,本地接听和主叫均为0.6元/分钟,长途0.8元;“动感地带”(M—zone)是今年3月份北京移动为年轻一族量身定做的移动客户品牌.其最大卖点在于其短信套餐,分别为每月支付20元可发300条短信或者每月支付30元可发500条短信(假设选择第一种套餐),一条不到一毛钱,资费标准:中国移动网内0.4元/分钟,网外0.6元/分钟,免交月租.若一个月内通话分钟为x(仅考虑均拨打本地网内电话的情况),三种方式的费用分别为y1元、y2元和y3元.练习1 (2)当x=300时,y1=170元,y2=180元,y3=140元,所以使用“动感地带”合算些.(1)一个月内通话多少分钟,“全球通”与“神州行”通讯费相同?(2)某人估计一个月内通话300分钟,应选择哪种通讯方式合算?解:(1)y1=50+0.4x,y2=0.6x,y3=20+0.4x,由y1=y2,解得x=250,所以一个月通话250分钟,两种方式通讯费相同. 某种细菌随时间的变化而迅速地繁殖增加,若在某个时刻这种细菌的个数为200个,按照每小时成倍增长,如下表:时间(小时)0123细菌数(个)2004008001600问:实验开始后5小时细菌的个数是多少?练习2 解:设实验时间为x小时,细菌数为y个,依题意有x小时0123y(个)2004008001600点ABCD200=200×20,400=200×21,800=200×22,1600=200×23.此实验开始后5小时,即x=5时,细菌数为200×25=6400(个).从而,我们可以将细菌的繁殖问题抽象归纳为一个指数函数关系式,即y=200·2x(x∈N). 课堂小结解函数的应用问题,一般地可按以下四步进行:第一步:阅读理解,认真审题第二步:引进数学符号,建立数学模型第三步:利用数学的方法将得到的常规数学问题(即数学模型)予以解答,求得结果第四步:再转移成具体问题作出解答 1.通过对给出的图形和数据的分析,抽象出相应的确定的函数模型。课堂小结2.根据收集到的数据,作出散点图,并通过观察图象判断问题所适用的函数模型,利用计算器的数据得出具体的函数解析式。再用得到的函数模型解决相应的问题。用已知的函数模型刻画实际问题的时候,由于实际问题的条件与得出已知模型的条件有所不同,因此,往往需要对模型进行修正。注意 作业:P107习题3.2A组第6题 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭