资料简介
第三章 3.2 3.2.2函数模型的应用实例基础巩固一、选择题1.一辆汽车在某段路程中的行驶速度v与时间t的关系图象如图,则t=2时,汽车已行驶的路程为( )A.100kmB.125kmC.150kmD.225km[答案] C[解析] t=2时,汽车行驶的路程为:s=50×0.5+75×1+100×0.5=25+75+50=150km,故选C.2.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y=其中,x代表拟录用人数,y代表面试人数,若应聘的面试人数为60,则该公司拟录用人数为( )A.15B.40C.25D.130[答案] C[解析] 令y=60,若4x=60,则x=15>10,不合题意;若2x+10=60,则x=25,满足题意:若1.5x=60,则x=40<100,不合题意,故拟录用人数为25,故选C.3.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( )A.14400亩B.172800亩C.20736亩D.17280亩[答案] D[解析] 设年份为x,造林亩数为y,则y=10000×(1+20%)x-1,∴x=4时,y=17280,故选D.4.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与售价x(元)满足一次函数:m=162-3x,若要每天获得最大的销售利润,每件商品的售价应定为( )A.30元B.42元C.54元D.越高越好[答案] B[解析] 设当每件商品的售价为x元时,每天获得的销售利润为y元.
由题意得,y=m(x-30)=(x-30)(162-3x).上式配方得y=-3(x-42)2+432.∴当x=42时,利润最大,故选B.5.今有一组实验数据如下表所示:t1.993.04.05.16.12u1.54.047.51218.01则能体现这些数据关系的函数模型是( )A.u=log2tB.u=2t-2C.u=D.u=2t-2[答案] C[解析] 可以先画出散点图,并利用散点图直观地认识变量间的关系,选择合适的函数模型来刻画它.散点图如图所示.由散点图可知,图象不是直线,排除选项D;图象不符合对数函数的图象特征,排除选项A;当t=3时,2t-2=23-2=6,排除B项,故选C.6.一天,亮亮发烧了,早晨6时他烧得很厉害,吃过药后感觉好多了,中午12时亮亮的体温基本正常,但是下午18时他的体温又开始上升,直到半夜24时亮亮才感觉身上不那么发烫了.则下列各图能基本上反映出亮亮一天(0~24时)体温的变化情况的是( )[答案] C[解析]
从0时到6时,体温上升,图象是上升的,排除选项A;从6时到12时,体温下降,图象是下降的,排除选项B;从12时到18时,体温上升,图象是上升的,排除选项D.二、填空题7.(2015·河北期中试题)某药品经过两次降价,每瓶的零售价由100元降为81元,已知两次降价的百分率相同,设为x,则求两次降价的百分率列出的方程为________.[答案] 100(1-x)2=81[解析] 因为两次降价的百分率相同,故列出的方程为100(1-x)2=81.8.(2015·徐州高一检测)用清水洗衣服,若每次能洗去污垢的,要使存留的污垢不超过1%,则至少要清洗的次数是________(lg2≈0.3010).[答案] 4[解析] 设至少要洗x次,则(1-)x≤,∴x≥≈3.322,所以需4次.三、解答题9.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的数据如下表:时间t50110250种植成本Q150108150(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系.Q=at+b,Q=at2+bt+c,Q=a·bt,Q=a·logbt.(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.[解析] (1)由提供的数据知道,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=a·bt,Q=a·logbt中的任意一个进行描述时都应有a≠0,而此时上述三个函数均为单调函数,这与表格所提供的数据不吻合.所以,选取二次函数Q=at2+bt+c进行描述.以表格所提供的三组数据分别代入Q=at2+bt+c得到,解得所以,描述西红柿种植成本Q与上市时间t的变化关系的函数为Q=t2-t+.(2)当t=-=150天时,西红柿种植成本最低为Q=·1502-
·150+=100(元/102kg).10.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.①若平均投入生产两种产品,可获得多少利润?②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?[解析] (1)设A,B两种产品分别投资x万元,x≥0,所获利润分别为f(x)万元、g(x)万元.由题意可设f(x)=k1x,g(x)=k2.根据图象可解得f(x)=0.25x(x≥0).g(x)=2(x≥0).(2)①由(1)得f(9)=2.25,g(9)=2=6.∴总利润y=8.25万元.②设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元.则y=(18-x)+2,0≤x≤18.令=t,t∈[0,3],则y=(-t2+8t+18)=-(t-4)2+.∴当t=4时,ymax==8.5,此时x=16,18-x=2.∴当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.能力提升一、选择题1.一个人以6米/秒的速度去追停在交通灯前的汽车,当他离汽车25米时,交通灯由红变绿,汽车以1米/秒2的加速度均加速开走,那么( )A.人可在7秒内追上汽车B.人可在10秒内追上汽车
C.人追不上汽车,其间距最少为5米D.人追不上汽车,其间距最少为7米[答案] D[解析] 设汽车经过t秒行驶的路程为s米,则s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7,当t=6时,d取得最小值为7,故选D.2.随着我国经济不断发展,人均GDP(国内生产总值)呈高速增长趋势.已知2008年年底我国人均GDP为22640元,如果今后年平均增长率为9%,那么2020年年底我国人均GDP为( )A.22640×1.0912元B.22640×1.0913元C.22640×(1+0.0912)元D.22640×(1+0.0913)元[答案] A[解析] 由于2008年年底人均GDP为22640元,由2008年年底到2020年年底共12年,故2020年年底我国人均GDP为22640×1.0912元.3.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(A,c为常数).已知工人组装第4件产品用时30min,组装第A件产品用时15min,那么c和A的值分别是( )A.75,25B.75,16C.60,25D.60,16[答案] D[解析] 由题意知,组装第A件产品所需时间为=15,故组装第4件产品所需时间为=30,解得c=60.将c=60代入=15,得A=16.4.一个高为H,盛水量为V0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h时水的体积为V,则函数V=f(h)的图象大致是( )[答案] D
[解析] 水深h越大,水的体积V就越大,故函数V=f(h)是递增函数,一开始增长越来越快,后来增长越来越慢,图象是先凹后凸的,曲线斜率是先增大后变小的,故选D.二、填空题5.某种放射性元素的原子数N随时间t的变化规律是N=N0e-λt,其中N0,λ是正的常数.由放射性元素的这种性质,可以制造出高精度的时钟,用原子数N表示时间t为________.[答案] t=-ln[解析] N=N0e-λt⇒=e-λt⇒-λt=ln⇒t=-ln.6.(2015·湖南十校联考)如下图所示,折线是某电信局规定打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的函数关系图象,根据图象填空:(1)通适2分钟,需付电话费________元;(2)通话5分钟,需付电话费________元;(3)如果t≥3,则电话费y(元)与通话时间t(分钟)之间的函数关系式为________.[答案] (1)3.6 (2)6 (3)y=1.2t(t≥3)[解析] (1)由图象可知,当t≤3时,电话费都是3.6元.(2)由图象可知,当t=5时,y=6,需付电话费6元.(3)当t≥3时,y关于t的图象是一条直线,且经过(3,3.6)和(5,6)两点,故设函数关系式为y=kt+b,则解得故电话费y(元)与通话时间t(分钟)之间的函数关系式为y=1.2t(t≥3).三、解答题7.(2015·河北石家庄期末)大气污染已经成为影响群众身体健康的重要因素,治理大气污染成为各钢铁企业的首要任务,其中某钢铁厂在处理工业废气的过程中,每经过一次处理可将有害气体减少20%,那么要让有害气体减少到原来的5%,求至少要经过几次处理?参考数据:lg2≈0.3010.[解析] 设工业废气在未处理前为a,经过x次处理后变为y,则y=a(1-20%)x=a(80%)x.由题意得=5%,
即(80%)x=5%,两边同时取以10为底的对数得xlg0.8=lg0.05,即x=≈13.4.因而需要14次处理才能使工业废气中的有害气体减少到原来的5%.8.2015年,某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,右面的二次函数图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).根据图象提供的信息解答下列问题:(1)由已知图象上的三点坐标,求累积利润S(万元)与时间t(月)之间的函数关系式;(2)求截止到第几月末公司累积利润可达到30万元;(3)求第八个月公司所获利润是多少万元?[解析] (1)由二次函数图象可知,设S与t的函数关系式为S=at2+bt+c(a≠0).由题意,得或或无论哪个均可解得a=,b=-2,c=0;∴所求函数关系式为S=t2-2t.(2)把S=30代入,得30=t2-2t,解得t1=10,t2=-6(舍去),∴截止到第十个月末公司累积利润可达到30万元.(3)第八个月公司所获利润为×82-2×8-×72+2×7=5.5,∴第八个月公司所获利润为5.5万元.
查看更多