资料简介
函数模型及其应用3.2.1几类不同增长的函数模型
在教科书第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.材料:澳大利亚兔子数“爆炸”
例1、假设你有一笔资金用于投资,现在有三种投资方案供你选择,这三种方案的回报如下:方案一、每天回报40元;方案二、第一天回报10元,以后每天比前一天多回报10元;方案三、第一天回报0.4元,以后每天的回报比前一天翻一番。请问,你会选择哪种投资方案?下面我们先来看两个具体问题。
解:设第x天所得回报是y元方案一可以用函数进行描述;方案二可以用函数进行描述;方案三可以用函数进行描述.例、1假设你有一笔资金用于投资,现在有三种投资方案供你选择,这三种方案的回报如下:方案一、每天回报40元;方案二、第一天回报10元,以后每天比前一天多回报10元;方案三、第一天回报0.4元,以后每天的回报比前一天翻一番。请问,你会选择哪种投资方案?分析:2、如何建立日回报效益与天数的函数模型?1、依据什么标准来选取投资方案?日回报效益,还是累计回报效益?
分析:2、如何建立日回报效益与天数的函数模型?1、依据什么标准来选取投资方案?日回报效益,还是累计回报效益?解:设第x天所得回报是y元方案一可以用函数进行描述;方案二可以用函数进行描述;方案三可以用函数进行描述.3、三个函数模型的增减性如何?4、要对三个方案作出选择,就要对它们的增长情况进行分析,如何分析?
图-1我们看到,底为2的指数函数模型比线性函数模型增长速度要快得多。从中你对“指数爆炸”的含义有什么新的理解?函数图象是分析问题的好帮手。为了便于观察,我们用虚线连接离散的点。
根据以上的分析,是否应作这样的选择:投资5天以下先方案一,投资5~8天先方案二,投资8天以上先方案三?由表-1和图-1可知,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但是方案三的函数与方案二的函数的增长情况很不同。可以看到,尽管方案一、方案二在第1天所得回报分别是方案三的100倍和25倍,但它们的增长量是成倍增加的,从第7天开始,方案三比其他两个方案增长得快得多,这种增长速度是方案一、方案二所无法企及的,从每天所得回报看,在第1~4天,方案一最多,在5~8天,方案二最多;第9天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元。
因此,投资8天以下(不含8天),应选择第一种投资方案;投资8~10天,应选择第二种投资方案;投资11天(含11天)以上,刚应选择第三种投资方案。
例2、某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润(单位:万元)的增加而增加,但资金总数不超过5万元,同时奖金总数不超过利润的25%,现有三个奖励模型:其中哪个模型能符合公司的要求?
例2、某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润 (单位:万元)的增加而增加,但资金总数不超过5万元,同时奖金总数不超过利润的25%,现有三个奖励模型: 其中哪个模型能符合公司的要求?分析:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,由于公司总的利润目标为1000万元,所以部门销售利润一般不会超过公司总的利润。同时奖金不超过利润的25%,于是,只需在区间[10,1000]上,检验三个模型是否符合公司要求即可。不妨先作出函数图象,通过观察函数的图象,得到初步的结论再通过具体计算,确认结果。(图略)
思考:1.X的取值范围,即函数的定义域.2.要满足哪些条件?3.通过图象说明选用哪个函数模型?为什么?
解:借助计算机作出函数的图象(图3.2-2)。观察图象发现,在区间[10,1000]上,模型 的图象都有一部分在直线的上方,只有模型的图象始终在的下方,这说明只有按模型进行奖励时才符合公司的要求,下面通过计算确认上述判断。
首选计算哪个模型的奖金总数不超过5万。对于模型 ,对于模型,对于模型,它在区间[10,1000]上递增,当时,因此该模型不符合要求;,由函数图象,并利用计算器,可知在区间 内有一个点 满足 ,由于它在区间[10,1000]上递增,因此当时,因此该模型也不符合要求;它在区间[10,1000]上递增,而且当时, ,所以它符合奖金总数不超过5万元的要求。
令。利用计算机作出函数的图象(图),由图象可知它是递减的,因此即所以当 时,。说明按模型 奖金不会超过利润的25%。再计算按模型 奖励时,奖金是否不超过利润的25%,即当 时,是否有成立。综上所述,模型 确实能很符合公司要求。
小结与反思:通过实例和计算机作图体会、认识直线上升、指数爆炸、对数增长等不同函数模型的增长的含义,认识数学的价值,认识数学与现实生活、与其他学科的密切联系,从而体会数学的实用价值,享受数学的应用美.
1、四个变量随变量变化的数据如下表:练习:1.0051.01511.04611.14071.42952.310751551301058055305337331758.294.478545053130200511305051305302520151050关于x呈指数型函数变化的变量是。
练习:2、某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机。现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有多少台计算机被感染?
作业习题3.2A组1、2B组1
查看更多